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Abstract. I will touch upon some of the main ideas and tools
of modern empirical process theory that I have found particularly
effective in my own research, and then, to illustrate their use, I
will show how they are applied in a number of papers of mine, es-
pecially in my recent papers on kernel-type non-parametric func-
tion estimators. It is not my intention to produce a self-contained
monograph on modern empirical process theory. For such treat-
ments the reader is invited to consult the many excellent empirical
process texts listed in the preface of these notes.
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Preface

These notes are an edited and extended version of those for a sur-
vey course on modern empirical process theory that I presented at
the Centro de Investigación en Matemáticas (CIMAT), Guanajuato,
Mexico, in February 2011. In preparing them I borrowed liberally
from monographs on empirical processes by Gaenssler (1983), Pollard
(1984, 1990), Shorack and Wellner (1986), van der Vaart and Well-
ner (1996), van der Vaart (1998), de la Peña and Giné (1999), Dudley
(1999), Devroye and Lugosi (2001) and Kosorok (2008). I shall focus
on those concepts and results that I have personally found useful in
my own research and demonstrate how they were applied in a number
of my papers. To illustrate many of the ideas, I shall provide proofs
for selected results. However, for complete proofs for nearly all of the
empirical process results discussed in these notes consult the following
lecture notes that are freely accessible on the web:

Michael Kosorok, Introduction to empirical processes and semipara-
metric inference.

http://www.bios.unc.edu/˜kosorok/current.pdf

Jon Wellner Special Topics Course Spring 2005, Delft Technical
University

http://www.stat.washington.edu/jaw/RESEARCH/TALKS/Delft/emp-
proc-delft-big.pdf

In addition, I took a lot of material from Empirical Processes and some
of their applications, by the late Evarist Giné. These are unpublished
notes that he prepared for courses that he gave at the Universidad de
Cantabria, Laredo, September 2004 and at the University of Vienna,
June 2007. These notes are listed as Giné (2007) in the Bibliography.
These are no longer available on the web. However most of the contents
of his notes are contained in Chapter 3 of the recent monograph by Giné
and Nickl (2015).

As stated in the abstract, it is not the purpose of these notes to provide
a self-contained exposition of modern empirical process theory. The
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iv PREFACE

above list of textbooks and lecture notes would provide a solid basis
for an empirical process course.

The author thanks CIMAT for their hospitality, where much of the
work on these notes was accomplished. He also greatly benefited from
many suggestions and corrections by Gauthier Dierickx and Uwe Ein-
mahl. He also acknowledges a interesting question posed to him by
Rolando Biscay that induced him to refine the presentation of VC and
VC subgraph classes.



 
 

CHAPTER 1

Introduction

1.1. My original motivation

In these notes I gather together the basic definitions and results
from modern empirical process theory that I have found useful in my
research. I shall demonstrate how they can be effectively applied to
the study the uniform consistency of a general class of nonparamet-
ric function estimators and to obtain Gaussian process distributional
and strong approximations to the empirical process indexed by sets or
functions. These applications are given in full detail in Chapter 11 and
12. From time to time I will take the opportunity to correct misprints
and small oversights in my published papers.

My original motivation to look at the empirical process indexed by
sets or functions was as a tool to study the generalized quantile process,
a notion that John Einmahl and I introduced in Einmahl and Mason
(1992). Here was our setup. Let X, X1,. . . , Xn, n ≥ 1, i.i.d. random
vectors taking values in Rd. Define the empirical measure on the Borel
sets B in Rd

Pn (B) =
1

n

n∑
i=1

1B (Xi) , B ∈ B,

and introduce the semi-metric d0 on B by

d0 (B1, B2) = E |1B1 (X)− 1B2 (X)| = P (B1∆B2) , for B1, B2 ∈ B.
Let A be a subset of B and λ be a real valued function defined on A.
Typically A is the class of all bounded closed intervals, closed balls or
closed ellipsoids and λ is Lebesgue measure. The quantile function U
based on P, λ and A is defined for all 0 < t < 1,

U (t) = inf {λ (A) : P (A) ≥ t, A ∈ A}
and the empirical quantile function

Un (t) = inf {λ (A) : Pn (A) ≥ t, A ∈ A} .
For example when λ is Lebesgue measure and A is the class of all closed
ellipsoids then Un (t) is roughly the volume of the smallest ellipsoid that
contains at least fraction t of the data points.
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2 1. INTRODUCTION

Under a number of regularity conditions we defined the generalized
quantile process

βn (t) = g (t)
√
n {U (t)− Un (t)} , 0 < t < 1,

where g (t) = h (U (t)) with h being the derivative of the inverse of
U and we proved that there exist a random process B related to the
Brownian bridge indexed by A and a sequence of probabilistic equiva-

lent versions β̃n of βn such for any 0 < a < b < 1, with probability 1,
written w.p. 1,

sup
a≤t≤b

∣∣∣β̃n (t)−B (t)
∣∣∣→ 0, as n→∞.

In the special case when X,X1,. . . , Xn, n ≥ 1, are i.i.d. Uniform (0, 1)
random variables, A = {[0, t] : 0 ≤ t ≤ 1} and λ is Lebesgue measure,
βn is the uniform quantile process and B is the standard Brownian
bridge.

Also of interest is the case when X1, . . . , Xn, n ≥ 1, are i.i.d. bivariate
normal random variables with mean vector (µ1, µ2), variances (σ2

1, σ
2
2)

and correlation coefficient −1 < ρ < 1, A = {closed ellipsoids in R2}
and λ is Lebesgue measure. Here we get that

sup
0≤t≤1

∣∣∣∣1− tτ √n
{
τ log

(
1

1− t

)
− Un (t)

}
−B (t)

∣∣∣∣→P 0, as n→∞,

where τ = 2πσ1σ2
√

1− ρ2 and B is the standard Brownian bridge.

Consider the empirical process indexed by the sets A ∈ A
αn (A) =

√
n {Pn (A)− P (A)} .

Essential to our proof was to show, under suitable conditions on A,
that αn convergence weakly to a Brownian bridge BP indexed by A
and continuous in the semi-metric d0. The process BP satisfies for all
A,B ∈ A,

EBP (A) = 0 and cov (BP (A) , BP (B)) = P (A ∩B)− P (A)P (B) .

1.2. Empirical processes indexed by functions

Let F be a class of measurable real-valued functions defined on a mea-
surable space (S,S). Let X,Xn, n ≥ 1, be a sequence of random
variables defined on a probability space (Ω,A, P ) and taking values in
S. Assume that for any f ∈ F , E |f (X)| < ∞. For any n ≥ 1 and
f ∈ F define the empirical measure

Pn (f) =
1

n

n∑
i=1

f (Xi) .
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We shall often use the notation

(1.1) P (f) = Ef (X) .

Notice that Pn (f) is an estimator of P (f) . By the strong law of large
numbers for each f ∈ F , w.p. 1,

Pn (f)→ P (f) , as n→∞.
In fact for some classes of functions this holds uniformly in f ∈ F ,
namely, w.p. 1,

(1.2) sup
f∈F

|Pn (f)− P (f)| → 0, as n→∞.

Results like this are called Glivenko-Cantelli theorems. In particular,
(1.2) holds for the class of functions

F = {ft : x 7→ 1{x ≤ t} : t ∈ Rd}.
In this case,

Eft(X) = E1{X ≤ t} = F (t), ft ∈ F ,
and Pn (ft) is the empirical distribution function based on the sample
X1, . . . ,Xn, namely,

Pn (ft) = Fn(t) :=
1

n

n∑
i=1

1{Xi ≤ t}, t ∈ Rd,

and the classic Glivenko-Cantelli theorem says that, w.p. 1,

sup
t∈Rd

|Fn (t)− F (t)| → 0, as n→∞.

We shall soon prove a general result that will give this particular
Glivenko-Cantelli theorem as a special case.

Now assume that for any f ∈ F ,

(1.3) Ef 2 (X) <∞.
Define the empirical process indexed by F

αn (f) =
√
n {Pn (f)− P (f)} , f ∈ F .

Notice that for any f, g ∈ F and n ≥ 1, P (αn (f)) = 0 and

cov (αn (f) , αn (g)) = P (fg)− P (f)P (g) .

Also

(1.4) P (αn (f)− αn (g))2 = P (f − g − P (f − g))2 =: ρ2P (f, g) .

For future reference we write

(1.5) d2P (f, g) = P (f − g)2



 
 

4 1. INTRODUCTION

and note d2P (f, g) ≥ ρ2P (f, g) . Let `∞ (F) denote the space of bounded
real valued functions defined on F . We equip `∞ (F) with the supre-
mum norm

(1.6) ‖Ψ‖F = sup
f∈F
|Ψ (f)| .

Notice that if

(F) supf∈F |f (x)| <∞ for all x ∈ S and supf∈F |P (f)| <∞,

then for each n ≥ 1, αn ∈ `∞ (F). From now on we shall assume that
the class F fulfills this condition.

Specializing to the case of the uniform empirical process

Let U,U1, U2, ..., be independent Uniform (0, 1) random variables and
consider the class of functions

(1.7) U = {ut : x 7→ 1{x ≤ t} : t ∈ [0, 1]}.
Note that for ut ∈ U ,

Pn (ut) = Gn(t) := n−1
n∑
i=1

1{Ui ≤ t} and Eut(U) = t,

so that αn(ut) = α̃n(t), where α̃n is the uniform empirical process

α̃n(t) :=
√
n(Gn(t)− t)), t ∈ [0, 1] .

Here are some more examples.

Examples of Empirical processes indexed by classes of func-
tions

In the following two examples X, Xn, n ≥ 1, are independent random
variables in Rd with common distribution function F .

1. Classical empirical process As above, consider the F = {ft :
x 7→ 1{x ≤ t} : t ∈ Rd}. In this case αn(ft) = α̃n(t), where α̃n is the
classical empirical process

α̃n(t) :=
√
n(Fn(t)− F (t)), t ∈ Rd.

In the next two examples we assume that F has a density function f
and K will be a bounded measurable function, called a kernel, defined
on Rd such that ∫

Rd
K (u) du = 1.

2. Kernel density estimator Define the class of real valued mea-
surable functions defined on Rd

K = {gt,h : x 7→ K
(
(t− x)/h1/d

)
: t ∈ Rd, h > 0}.
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Then we get the kernel density estimator

(1.8) h−1Pn (gt,h) =
1

nh

n∑
i=1

K
(
(t−Xi)/h

1/d
)

=: fn,h(t)

and
αn(h−1gt,h) =

√
n(fn,h(t)− Efn,h(t)), gt,h ∈ K.

3. Nadaraya–Watson–type estimator In this example (X, Y ),
(Xn, Yn), n ≥ 1, are i.i.d. random vectors taking values in in Rd × R.
Define the class of functions

Kϕ = {ϕt,h : (x, y) 7→ ϕ(y)K
(
(t− x)/h1/d

)
: t ∈ Rd, h > 0},

where K is a kernel and ϕ is a measurable real valued function defined
on R. We obtain for any function ϕt,h ∈ Kϕ that

(1.9) h−1Pn (ϕt,h) =
1

nh

n∑
i=1

ϕ (Yi)K
(
(t−Xi)/h

1/d
)

=: ϕ̂n,h(t).

The Nadaraya-Watson estimator of E (ϕ (Y ) |X = t) becomes

(1.10)
ϕ̂n,h(t)

fn,h(t)
=

∑n
i=1 ϕ (Yi)K

(
(t−Xi)/h

1/d
)∑n

i=1K ((t−Xi)/h1/d)
.

These examples indicate how empirical processes indexed by classes
of functions could play a crucial role in the analysis of many nonpara-
metric kernel–type estimators. In fact, they do. See especially, Ein-
mahl and Mason (2000, 2005), Giné and Guillou (2001), Deheuvels and
Mason (2004), Mason and Swanepoel (2011) and Mason (2011). The
kernel density and Nadaraya-Watson estimators will be discussed in
more detail in Chapter 11 and Chapter 9, respectively.



 
 



 
 

CHAPTER 2

Weak Convergence

In this chapter we shall assume that F is a class of measurable real
valued functions such that (1.3) holds. (Note that we always assume
(F).)

Convergence in Distribution

Now by the multivariate central limit theorem for any m ≥ 1 and
f1, . . . , fm ∈ F

(αn (f1) , . . . , αn (fm))→d (X (f1) , . . . , X (fm)) ,

a mean zero multivariate normal random vector with covariance matrix

(2.1) {cov (X (fi) , X (fj))}mmi=1j=1 = {cov (fi (X) , fj (X))}mmi=1j=1 ,

Gaussian process A random process X (f) indexed by f ∈ F , such
for any m ≥ 1 and f1, . . . , fm ∈ F , (X (f1) , . . . , X (fm)) is multivariate
normal with mean zero and covariance matrix (2.1) is special case of a
Gaussian process.

In the case of the uniform empirical process we get

(αn (ut1) , . . . , αn (utm))→d (B (t1) , . . . , B (tm)) ,

a mean zero multivariate normal random vector with the Brownian
bridge covariance matrix

(2.2) {cov (B (ti) , B (tj))}mmi=1j=1 = {ti ∧ tj − titj}mmi=1j=1 .

The Skorohod Representation Theorem for the uniform empirical pro-
cess αn says that there exists a sequence {α̃n} of probabilistically equiv-
alent versions of {αn}, meaning α̃n =d αn, for each n ≥ 1, and a fixed
Brownian bridge B such that

sup
0≤t≤1

|α̃n (t)−B (t)| → 0, a.s., as n→∞.

This of course implies that for any Ψ function defined on `∞ (U), where
U is as in (1.7), that is continuous in the supremum norm ‖·‖U that

(2.3) Ψ (αn)→d Ψ (B) , as n→∞.
7
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In particular this says that

‖αn‖U →d sup
t∈[0,1]

|B (t)| , as n→∞.

In order to talk about convergence in distribution for the more general
empirical process αn (f) , f ∈ F , indexed by a class of functions F to
a mean zero Gaussian process X (f) , f ∈ F , with covariance

cov (X (f) , X (g)) = cov (f (X) , g (X)) , f, g ∈ F ,
in the sense that for any Ψ function defined on `∞ (F) that is continuous
in the supremum norm ‖·‖F , a version of (2.3) holds, we need a general
notion of weak convergence.

Weak Convergence on a Metric Space

Let (M,d) be a metric space and let Md denote its Borel σ−field and
MU

d be the smallest σ−field containing the open balls {y : d (x, y) < r},
x ∈ M and r > 0. Clearly MU

d ⊂ Md. It turns out that Md = MU
d

whenever M is separable (see page 26 Shorack and Wellner (1986)).

Let Xn be a sequence of random variables defined on a probability
space (Ω,A, P ) and taking values in M . Assume that they are MU

d

measurable, that is, for each B ∈MU
d

{ω : Xn (ω) ∈ B} ∈ A.

For each integer n ≥ 1, let Pn denote the probability measure induced
on
(
M,MU

d

)
by Xn, i.e. for any B ∈MU

d ,

Pn (B) = P {ω : Xn (ω) ∈ B} .
Weak Convergence Definition 1 A sequence of random variables
Xn converges weakly to X0 (or Pn converges weakly to P0) provided∫

M

fdPn = Ef (Xn)→
∫
M

fdP0 = Ef (X0) , as n→∞,

for all real valued functions f on M that are bounded, d−uniformly
continuous and MU

d−measurable. We denote this by

Xn =⇒ X0 or Pn =⇒ P0, as n→∞.
This notion of weak convergence was introduced by Dudley (1966) and
extended by Wichura in his 1968 Ph.D. dissertation.

Skorohod, Dudley, Wichura Theorem SupposeXn converges weakly
toX0 and P0 (Ms) = 1 for aMU

d measurable setMs that is d−separable.

Then there exists a probability space
(

Ω̃, Ã, P̃
)

and random variables

X̃n, n ≥ 0, mapping
(

Ω̃, Ã
)
→
(
M,MU

d

)
such that for each n ≥ 0,
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Pn (B) = P̃n (B) , for all B ∈ MU
d and d

(
X̃n, X̃0

)
→ 0, as n → ∞,

a.s.

For a proof of this result consult Dudley (1976). Skorohod proved this
theorem assuming that M is a complete separable metric space, in
which case one can choose Ms = M . A nice proof of the Skorohod
result is given in Billingsley (1971).

We shall next extend our notion of weak convergence. First we must
talk about outer integrals and probabilities.

Outer integrals and probabilities Let L be an extended real valued
function defined on a probability space (Ω,A, P ). Denote the extended
reals by R. As on page 6 of van der Vaart and Wellner (1996), define
the outer integral of L
(2.4)
E∗L = inf

{
EU : U ≥ L, U : Ω→ R measurable and EU exists

}
and the outer probability of an arbitrary subset B of Ω

(2.5) P ∗ (B) = inf {P (A) : B ⊂ A, A ∈ A} .

For more clarification of the meaning of E∗L see Theorem 3.2.1 of
Dudley (1999).

Weak Convergence Definition 2 Let Xn, n ≥ 0, be a sequence of
random variables defined on a probability space (Ω,A, P ) and taking
values in M . Assume that X0 is Borel measurable, that is, for each
B ∈ Md, {ω : X0 (ω) ∈ B} ∈ A. The sequence of random variables
Xn converges weakly to X0 if for every f ∈ Cb (M), the set of bounded
continuous functions on M ,

E∗f (Xn)→ Ef (X0) , as n→∞.

Weak Convergence in `∞ (T )

Let `∞ (T ) denote the space of bounded real–valued functions on a
set T equipped with the supremum norm ‖·‖T . The space `∞ (T ) is a
Banach space, which is separable if and only if T is finite. Specializing
to the metric space M = `∞ (T ) we get the following definition for
weak convergence of a sequence Xn of random processes taking values
in `∞ (T ).

Weak Convergence Definition 3 We shall say that Xn converges
weakly in `∞ (T ) to a tight Borel measurable X0 if

E∗H (Xn)→ EH (X0)

for all bounded and continuous functions H : `∞ (T )→ R.
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(X0 tight means that for all 0 < ε < 1 there exists a compact subset
K ⊂ `∞ (T ) such that P {X0 ∈ K} > 1− ε.)
The limiting quantity X0 will have sample paths that have a certain
minimum amount of smoothness. To be more precise, for an index set
T let ρ be a semi-metric on T , in that ρ has all the properties of a
metric except that ρ(s, t) = 0 does not necessarily imply s = t. We
say that (T, ρ) is totally bounded if for every δ > 0, there exists a
finite collection Tk = {t1, ..., tk} ⊂ T such that for all t ∈ T , we have
ρ(t, s) ≤ δ for some s ∈ Tk. Now define UC(T, ρ) to be the subset of
`∞ (T ), where each x ∈ UC(T, ρ) satisfies

lim
δ↘0

sup
ρ(s,t)≤δ,s,t∈T

|x(t)− x(s)| = 0.

The “UC” refers to uniform continuity. It will turn out that the tight
X0 will be in UC(T, ρ) almost surely for some ρ for which T is totally
bounded.

Remark Notice that if T is complete then T is also compact. Thus
UC(T, ρ) = C(T, ρ), the space of continuous functions on T equipped
with the supremum norm ‖·‖T . In any case, any x ∈ UC(T, ρ) can be
extended uniquely to a function x ∈ C(F c, ρ), where F c is the com-
pletion of T , which is necessarily compact, whenever (T, ρ) is totally
bounded. For future reference we note that when T is compact C(T, ρ)
is a Polish space, that is a complete, separable metric space with metric
‖·‖T .

Two conditions need to be met in order for Xn to converge weakly in
`∞ (T ) to a tight X0. This is summarized in the following theorem,
which is Theorem 3.7.23 of Giné and Nickl (2015).

Theorem A sequence of bounded processes Xn converges weakly to a
tight X0 in `∞ (T ) if and only if :

(i) For all finite Tk = {t1, ..., tk} ⊂ T , the multivariate distribution
of

(Xn(t1), ..., Xn(tk)) converges weakly to that of (X0(t1), ..., X0(tk)).

(ii) There exists a semi-metric d for which T is totally bounded and
for all ε > 0

lim
δ↘0

sup
d(s,t)≤δ,s,t∈T

P ∗ (|Xn(t)−Xn(s)| > ε) = 0.

Moreover, if (i) and (ii) hold, then the process X0, whose distri-
bution is completely determined by its finite dimensional laws, has a
version that has bounded and uniformly continuous paths for d. More-
over, if X0 has a version with almost all of its trajectories in UC (T, ρ)
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for a suitable semi-metric ρ for which (T, ρ) is totally bounded, then
the d in (ii) can be chosen to be ρ.

Tight Gaussian processes will be the most important limiting processes
considered in these lectures. In fact, in the applications that we have
in mind X0 will be a mean zero Gaussian process and

ρ(s, t) =

√
E (X0(t)−X0(s))

2.

The material in this section was largely taken from Shorack and Wellner
(1986) and Giné and Nickl (2015).



 
 



 
 

CHAPTER 3

Donsker Class

Let F be a class of measurable real-valued functions defined on a mea-
surable space (S,S). Let X,Xn, n ≥ 1, be an i.i.d. sequence of random
variables defined on a probability space (Ω,A, P ) and taking values in
S. Assume the class F satisfies (F), as defined in Chapter 1, and that
for any f ∈ F , Ef 2 (X) < ∞. Such a class of measurable functions
F is called P-Donsker if the mean zero Gaussian process GP with
covariance function cov (GP (f) , GP (g)) = cov (f (X) , g (X)) admits
a version whose sample paths are bounded and uniformly continuous
with respect to the semi-metric

ρP (f, g) =
√
V ar (f (X)− g (X)) =

√
P (f − g − P (f − g))2

and the sequence of empirical processes αn converges weakly in `∞ (F)
to GP (f) , f ∈ F . We shall also use the semi-metric

(3.1) dP (f, g) =

√
P (f − g)2 =

√
E (f (X)− g (X))2.

Theorem 3.7.2 of Dudley (1999) The following are equivalent. Let
F be as above. The following are equivalent:

(i) F is P-Donsker ;

(ii) (F , ρP ) is totally bounded and for all ε > 0

(3.2) lim
δ↘0

lim sup
n→∞

P ∗

(
sup

ρP (f,g)≤δ,f,g∈F
|αn (f)− αn (g)| > ε

)
= 0;

(iii) There exists a semi-metric d for which (F , d) is totally bounded
and for all ε > 0

(3.3) lim
δ↘0

lim sup
n→∞

P ∗

(
sup

d(f,g)≤δ,f,g∈F
|αn (f)− αn (g)| > ε

)
= 0;

(The proof that (iii) implies (i) is rather deep.) A special case of this
theorem is the following asymptotic equicontinuity result.

Asymptotic Equicontinuity

A class F as above is P-Donsker if and only if

13



 
 

14 3. DONSKER CLASS

(i) (F , ρP ) is totally bounded and for all ε > 0, (3.2) holds; if and only
if

(ii) (F , dP ) is totally bounded and for all ε > 0, (3.3) holds with d = dP .

Related to this equicontinuity result is the following fact.

Fact Let F be a class of measurable functions such that Ef 2(X) <∞
for all f ∈ F , and (F) holds. (F , ρP ) is totally bounded if and only if
(F , dP ) is totally bounded.

Proof Clearly F is dP -totally bounded implies F is ρP -totally bounded.
Assume F is ρP -totally bounded. Choose ε > 0 and a ρP − ε/

√
2-grid

{fi}Ni=1. Since supf∈F |Ef(X)| <∞ we can choose an ε-grid

{ai}Mi=1 ⊂ [−2 sup |Ef(X)|, 2 sup |Ef(X)|],
such that for any f, g ∈ F there is an ai such that |E(f(X)− g(X))−
ai| < ε/

√
2. Let f ∈ F be arbitrary. There is an fi such that

ρP (fi, f) < ε/
√

2. Further there is an aj such that |E(f(X)−fi(X))−
aj| < ε/

√
2. Thus

d2P (f, aj + fi) = ρ2P (f, fi) + (E(f(X)− fi(X))− aj)2 < ε2.

The NM balls

Bε (fi + aj) = {f : dP (f, aj + fi) < ε} , 1 ≤ i ≤ N , 1 ≤ j ≤M

clearly cover F . For each Bε (fi + aj) choose a gi,j ∈ Bε (fi + aj) ∩ F .
We see that if f ∈ Bε (fi + aj) ∩ F

dP (f, gi,j) ≤ dP (f, aj + fi) + dP (gi,j, aj + fi) < 2ε.

Then {gi,j}i,j is an 2ε-grid in dP . �

Useful Donsker class facts

1. If G ⊂ F and F is P-Donsker then G is also P-Donsker.

2. If F and G are P-Donsker, then so is F ∪ G. (See Theorem 3.8.1
of Dudley (1999).)

3. If F and G are P-Donsker, then so are F ∨ G and F ∧ G.
(This is Example 2.10.7 of van der Vaart and Wellner (1996).) Here
F ∨ G = {f ∨ g : f ∈ F and g ∈ G}, f ∨ g = max {f, g}, and F ∧ G =
{f ∧ g : f ∈ F and g ∈ G} , where f ∧ g = min {f, g}.

4. If F and G are P-Donsker, then so are

{αf + (1− α) g : f ∈ F ,g ∈ G, 0 ≤ α ≤ 1}
and

F + G = {f + g : f ∈ F ,g ∈ G} .
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(Combine exercise 6 on page 127 of Dudley (1999) with facts 1 and 2.)

5. If F and G are uniformly bounded P-Donsker classes, then so
is {fg : f ∈ F , g ∈ G} . (This is Example 2.10.8 of van der Vaart and
Wellner (1996).)

3.1. Compact LIL

In this section we state a compact LIL for the empirical process,
which is often useful to establish the asymptotic consistency of cer-
tain statistical estimators. The presentation in this section is adapted
from material in Giné and Mason (2007). Let X,X1, X2, . . . , be i.i.d.
random variables from a probability space (Ω,A, P ) to a measurable
space (S,S). Consider the empirical process indexed by a class F of
measurable real valued functions on (S,S) defined by

√
n(Pn − P )ϕ =

∑n
i=1 ϕ (Xi)− nEϕ (X)√

n
, ϕ ∈ F .

Assume that the class F is separable for P (P -separable) in the follow-
ing sense:

Definition 1 A class F is separable for P if for each n the process (Pn−
P )ϕ, ϕ ∈ F , is separable. This means that there exists a countable
subset F0 ⊆ F such that for each ϕ in F ,

(Pn − P )ϕ ∈ {(Pn − P )g : g ∈ F0, ‖ϕ− g‖L2(P ) ≤ ε},

for every ε > 0, where A denotes the closure of a set A and

‖ϕ− g‖2L2(P ) = E (ϕ (X)− g (X))2 .

In the following definition `∞(F) denotes the space of bounded func-
tions γ on F , equipped with supremum norm ‖γ‖F = supϕ∈F |γ (ϕ)|.
Definition 2 We say that a P -separable class of functions F satisfies
the compact LIL for P , whenever the sequence{√

n(Pn − P )ϕ√
2 log log n

: ϕ ∈ F
}∞
n=1

is almost surely relatively compact in `∞(F) with set of limit points

(3.4) H =
{
γ 7→ E

[
(γ(X)− Pγ)h(X)

]
: Eh2(X) ≤ 1

}
.

Note that, in particular, if F satisfies the compact LIL for P , then

(3.5) lim sup
n→∞

sup
ϕ∈F

∣∣∣∣√n(Pn − P )ϕ√
2 log log n

∣∣∣∣ = sup
ϕ∈F

(Var(ϕ(X)))1/2, a.s.
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Let us recall a LIL for empirical processes proved by Ledoux and Tala-
grand (1988) in separable Banach spaces and stated in the language of
empirical processes in Theorem 9 on p. 609 of Ledoux and Talagrand
(1989). Let F be a separable for P class of functions in the sense of
Definition 1.

In this situation, a P−separable class F ⊂ L2(P ) such that

sup
ϕ∈F
|Pϕ| <∞

satisfies the compact LIL for P if and only if

a) F is totally bounded in L2,

b) E(H2/ log logH) <∞ where H = supϕ∈F |ϕ|, and

c) supϕ∈F

∣∣∣√n(Pn−P )ϕ√
log logn

∣∣∣→ 0 in probability.

In particular, assuming separability, if EH2 <∞ and F is P -Donsker
then F satisfies the compact LIL, since F being P -Donsker implies
that the sequence supϕ∈F |(Pn − P )ϕ/

√
n| is stochastically bounded.



 
 

CHAPTER 4

A Digression about Gaussian Processes

Let X be mean zero Gaussian process on a probability space (Ω,A, P )
indexed by a set T . This means that for any m ≥ 1 and {t1, . . . , tm} ⊂
T , (X (t1) , . . . , X (tm)) is multivariate normal with covariance matrix
{cov (X (ti) , X (tj))}mmi=1j=1 and means EX (ti) = 0. Define the semi–
metric ρ on T by

(4.1) ρ (s, t) =

√
E (X (t)−X (s))2.

Assume that X is separable with respect to ρ. This means that there
exist a subset Ω0 ⊂ Ω and a countable subset T0 ⊂ T such that
P (Ω0) = 1 and for all ω ∈ Ω0, t ∈ T and ε > 0

X (t, ω) ∈ {X (s, ω) : s ∈ T0 ∩Bε (t)},
where Bε (t) = {s : ρ (s, t) < ε} .
For each ε > 0 let N (ε, T, ρ) denote the minimal number of ρ-balls of
radius ε needed to cover T. Write ‖X‖T = supt∈T |X (t)| and σ2

T (X) =
supt∈T E (X2 (t)). The following large deviation probability estimate
for ‖X‖T is due to Borell (1975). (Also see Proposition A.2.1 in
van der Vaart and Wellner (1996).) Let M (X) denote the median of
‖X‖T , i.e. P {‖X‖T ≥M (X)} ≥ 1/2 and P {‖X‖T ≤M (X)} ≥ 1/2.
We shall assume that M (X) is finite.

Borell’s inequality For all t > 0,

(4.2) P {|‖X‖T − E (‖X‖T )| > t} ≤ 2 exp

(
− t2

2σ2
T (X)

)
.

According to Dudley (1967), the entropy condition

(4.3)

∫
[0,1]

√
logN (ε, T, ρ) dε <∞

ensures the existence of a separable, bounded, ρ-uniformly continuous
modification of X. Moreover the above Dudley integral (4.3) controls
the modulus of continuity of X (see Dudley (1973)) as well as its ex-
pectation (see Marcus and Pisier (1981), p. 25, Ledoux and Talagrand
(1991), p. 300, de la Peña and Giné (1999), Cor. 5.1.6, and Dudley

17
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(1999)). The following inequality is part of Corollary 2.2.8 in van der
Vaart and Wellner (1996).

Gaussian moment inequality For some universal constant A4 > 0
and all σ > 0 we have

(4.4) E

(
sup

ρ(s,t)<σ

|X (t)−X (s)|

)
≤ A4

∫
[0,σ]

√
logN (ε, T, ρ) dε.

and for any t0 ∈ T ,

(4.5) E (‖X‖T ) ≤ E |Xt0|+ A4

∫
[0,D]

√
logN (ε, T, ρ) dε

with

(4.6) D = sup
s,t∈T

ρ (s, t)

denoting the diameter of T
Notice that if d is a semi–metric on T such that for all s, t ∈ T , d (s, t) ≥
ρ (s, t), then

sup
{s:ρ(s,t)<σ}

|X (t)−X (s)| ≥ sup
{s: d(s,t)<σ}

|X (t)−X (s)|

and N (ε, T, d) ≥ N (ε, T, ρ). Thus

(4.7)

∫
[0,1]

√
logN (ε, T, d) dε <∞

implies by the Dudley result the existence of a separable, bounded, d-
uniformly continuous modification of X. (Here note that ρ-uniformly
continuous implies d-uniformly continuous.) Moreover the moment in-
equalities in (4.4) and (4.5) hold when ρ is replaced by d and in the
definition of D.

These two inequalities play a crucial role in establishing the strong
approximation results in Chapter 12.



 
 

CHAPTER 5

Some Empirical Process Tools

We shall next discuss some tools and assumptions that are useful
to establish (3.2) or (3.3). The first is symmetrization.

5.0.1. Symmetrization. To verify (3.2) or (3.3) it is often helpful

to consider their symmetrized versions.

Rademacher variable A random variable ε is called a Rademacher
variable if

P{ε = 1} = P{ε = −1} = 1/2.

Rademacher process Let X1, . . . ,Xn be independent random vari-
ables and consider independent Rademacher variables ε1, . . . , εn inde-
pendent of the Xi’s. For a class of measurable functions F , we define
the Rademacher process

f 7→
n∑
i=1

εif(Xi).

*From now on, unless stated otherwise, ε1, . . . , εn will denote indepen-
dent Rademacher variables.

A very useful property of such a Rademacher process is that its ex-
pectation provides upper and lower bounds for moments of the supre-
mum of the empirical process indexed by a class of functions.

Symmetrization Lemma For any class of functions G in Lp (P ) with
p ≥ 1 it holds that

1

2p
E∗

∥∥∥∥∥
n∑
i=1

εi (g(Xi)− Eg (X))

∥∥∥∥∥
p

G

≤ E∗

∥∥∥∥∥
n∑
i=1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

≤ 2pE∗

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
p

G

,(5.1)

where ‖Ψ(g)‖G = supg∈G |Ψ(g)|.
19
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Proof To avoid using the ∗ superscript, we shall assume that G is
countable. We get by Jensen’s inequality that

E

∥∥∥∥∥
n∑
i=1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

≤ E

∥∥∥∥∥
n∑
i=1

g(Xi)−
n∑
i=1

g(X ′i)

∥∥∥∥∥
p

G

,

where X1, . . . , Xn, X ′1, . . . , X
′
n are i.i.d.. Notice that

E

∥∥∥∥∥
n∑
i=1

g(Xi)−
n∑
i=1

g(X ′i)

∥∥∥∥∥
p

G

= E

∥∥∥∥∥
n∑
i=1

εi (g(Xi)− g(X ′i))

∥∥∥∥∥
p

G

.

Now by Minkowski’s inequality,(
E

∥∥∥∥∥
n∑
i=1

εi (g(Xi)− g(X ′i))

∥∥∥∥∥
p

G

)1/p

≤

(
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
p

G

)1/p

+

(
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
p

G

)1/p

= 2

(
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
p

G

)1/p

.

Next keeping (ε1, . . . , εn) fixed, we see that(
E

∥∥∥∥∥
n∑
i=1

εi (g(Xi)− Eg (X))

∥∥∥∥∥
p

G

)1/p

=

E ∥∥∥∥∥∑
εi=1

(g(Xi)− Eg (X))−
∑
εi=−1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

1/p

≤

E ∥∥∥∥∥∑
εi=1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

1/p

+

E ∥∥∥∥∥ ∑
εi=−1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

1/p

≤ 2

(
E

∥∥∥∥∥
n∑
i=1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

)1/p

.
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To see why this last inequality is true, consider for instance the
∑

εi=1

sum. Note that keeping (ε1, . . . , εn) fixedE ∥∥∥∥∥∑
εi=1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

1/p

=

E ∥∥∥∥∥∑
εi=1

(g(Xi)− Eg (X))−
∑
εi=−1

E (g(Xi)− Eg (X))

∥∥∥∥∥
p

G

1/p

,

which by Jensen’s inequality is

≤

E ∥∥∥∥∥∑
εi=1

(g(Xi)− Eg (X))−
∑
εi=−1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

1/p

,

=

(
E

∥∥∥∥∥
n∑
i=1

εi (g(Xi)− Eg (X))

∥∥∥∥∥
p

G

)1/p

.

Therefore with random εi

2−pE

∥∥∥∥∥
n∑
i=1

εi (g(Xi)− Eg (X))

∥∥∥∥∥
p

G

≤ E

∥∥∥∥∥
n∑
i=1

(g(Xi)− Eg (X))

∥∥∥∥∥
p

G

.

�
This proof was largely taken from de la Peña and Giné (1999).

5.0.2. Measurability. Warning! Sometimes

Dn := sup
f∈F

|Pn (f)− P (f)|

is not measurable. Consider this example. For each n ≥ 1 let U1, . . . , Un
be i.i.d. U , where U is a Uniform (0, 1) random variable. Let A be a non
Lesbegue measurable subset of (0, 1). Such sets exist, see Theorem E
in Section 16 of Halmos (1950). Let C = {C : C is a finite subset of A}
and set F = {1C : C ∈ C}. Define for x = (x1, . . . , xn) ∈ (0, 1)n

Dn (x) = sup
C∈C

1

n

n∑
i=1

1C (xi) .

Then since P (C) := P {U ∈ C} = 0 for all C ∈ C, we see clearly, w.p.
1,

Dn (U1, . . . , Un) := sup
f∈F

|Pn (f)− P (f)| = sup
C∈C

|Pn (1C)|

and {x : x ∈ (0, 1)n and Dn (x) = 1} = A × · · · × A, (n times). Pro-
jections of Borel measurable subsets of Rn are Lebesgue measurable.
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This means that A × · · · × A is not a Borel set and thus Dn is not a
Borel measurable function from (0, 1)n to R.

Envelope function Let G be a class of measurable functions g :
S → R. A function G is called an envelope function of G if G(x) ≥
supg∈G |g(x)| for all x ∈ S.

Pointwise measurable classes

We say that a class G of measurable functions g : S → R is pointwise
measurable if there exists a countable subclass G0 ⊆ G, so that for any
function g in G, we can find a sequence of functions gm ∈ G0, m ≥ 1
for which gm(x)→ g(x), x ∈ S.

Assuming G to be pointwise measurable ensures that the supremum of
the Rademacher process i.e.

‖
n∑
i=1

εig(Xi)‖G

is measurable. Moreover, if G has an envelope function G such that
P (G) < ∞, it also implies that Dn is measurable. Here are some
examples of classes of functions that are pointwise measurable.

Example 1 The classes of functions F = {1C : C ∈ C} , where

C =
{
C = (−∞, x1]× · · · × (−∞, xd] : x ∈ Rd

}
or C =

{
C : C is a closed ball in Rd

}
are pointwise measurable. However, the class F =

{
1C+z : z ∈ Rd

}
,

where C is a fixed closed ball is not pointwise measurable.

Example 2 Consider a real valued right–continuous function ϕ : R→
R, and define the class

Fϕ := {x 7→ ϕ(γx+ t) : γ > 0, t ∈ R}.
Then this class is always pointwise measurable. Let Q denote the ra-
tionals. The subclass that will do the job here is

Fϕ0 := {x 7→ ϕ(γx+ t) : γ > 0, γ, t ∈ Q}.
Proof We claim that G is a pointwise measurable class. To see this
choose any g(u) = ϕ(γu + t) ∈ G, u ∈ R and set for m ≥ 1, gm(u) =
ϕ(γmu+ tm), u ∈ R, where γm = 1

m2 bm2γc+ 1
m2 and tm = 1

m
bmtc+ 2

m
,

with bxc denoting the integer part of x. With εm = γm − γ and δm =
tm − t, we can write

∆m := γmu+ tm − (γu+ t) = εmu+ δm.
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Now since 2
m2 ≥ εm > 0 and 3

m
≥ δm > 1

m
, we get for all large enough

m that

∆m = δm (1 + o(1)) > 0.

Thus since γmu+ tm → γu+ t and ϕ is right-continuous at γu+ t, we
see that gm(u)→ g(u) as m→∞. tu

This proof is taken from that of Lemma A.1 of Deheuvels and Mason
(2004) with a couple of misprints corrected.

Cases that are of particular interest in these lectures are the following.

(1) If K is a right–continuous function, K := {x 7→ K((t−x)/h) :
h > 0, t ∈ R} is pointwise measurable.

(2) For any continuous function ψ : R → R, we can also show
that G := {x 7→ ψ(x)K((t− x)/h) : h > 0, t ∈ R} is pointwise
measurable.

These observations are easily translated to the d–dimensional case. For
example, the same arguments can be used to show that Fϕ = {x 7→
ϕ(γx + t) : γ > 0, t ∈ Rd} is pointwise measurable, where ϕ is a real
valued right–continuous function on Rd. Hence, so will be

K = {x 7→ h−1K((t− x)/h1/d) : h > 0, t ∈ Rd},

as well as

G = {(x, y) 7→ ψ(y)K((t− x)/h1/d) : h > 0, t ∈ Rd},

where ψ : Rr → R is measurable with r ≥ 1.

Also trivially notice that if K1, . . . , Kp are right continuous func-
tions on R and ϕ is a fixed measurable real-valued function on R, then
the class of functions of (x1, . . . , xp, y) =: (x,y) ∈ Rp×R,
(5.2){

(x,y) 7−→ ϕ (y) Πp
j=1Kj (γjxj + ρj) : γj > 0, ρj ∈ R, 1 ≤ j ≤ p

}
,

is pointwise measurable. (Note that this corrects the last displayed
equation on page 1538 of Mason and Swanepoel (2015).)

For more about pointwise measurability see pages 109-110 and Ex-
ample 2.3.4 of van der Vaart and Wellner (1996), as well as Section 8.2
of Kosorok (2008).
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5.0.3. Covering and packing numbers. Let G be a class of
measurable functions g : S → R and let dS be a distance on S × S,
i.e. dS (f, g). Let N (ε,G, dS) denote the minimal number of open balls
{g : dS(g, f) < ε} of dS–radius ε > 0 needed to cover G and N (ε,G, dS)
denote the minimal number of closed balls {g : dS(g, f) ≤ ε} of dS–
radius ε > 0 needed to cover G. These are the open and closed covering
numbers of G with respect to dS. Note that it is not required that the
f ∈ G. Clearly

(5.3) N (ε,G, dS) ≤ N (ε,G, dS) ≤ N
( ε

2
,G, dS

)
Next define the packing numbers D(ε,G, dS) =

max

{
n : there are f1, . . . , fn ∈ G such that sup

f∈G
min
1≤i≤n

dS(f, fi) > ε

}
.

We have

(5.4) N (ε,G, dS) ≤ D(ε,G, dS) ≤ N
( ε

2
,G, dS

)
.

To see this note that there exists a minimal subset Gε of cardinality
n = D(ε,G, dS) satisfying

min
1≤i,j≤n,i6=j

dS(fi, fj) > ε.

Now place a closed ball of radius ε around each fi. This forms a cover-
ing. If not there would exist a f ∈ G such that min1≤i≤n dS(fi, f) > ε,
which contradicts the definition of D(ε,G, dS). Thus N (ε,G, dS) ≤
D(ε,G, dS). Now note that no closed ball of radius ε

2
can cover two dis-

tinct fi, fj. Thus at least D(ε,G, dS) closed balls of radius ε
2

are needed

to cover G. Therefore D(ε,G, dS) ≤ N
(
ε
2
,G, dS

)
.

Uniform entropy We define the uniform entropy of G with measur-
able envelope function G as

N (ε,G) := sup
Q
N (ε

√
Q(G2),G, dQ),

where the supremum is taken over all probability measures Q on the
measurable space (S,S) for which 0 < Q(G2) < ∞ and dQ is the
L2(Q)–metric, i.e.

dQ(g, f) =

√
Q (g − f)2.

Polynomial uniform covering number Often a class of measurable
functions G will satisfy a uniform polynomial covering number condi-
tion, namely, that for some constants C, ν > 0,
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N (ε,G) ≤ Cε−ν , 0 < ε < 1.

Examples of classes with polynomial covering numbers are Vapnik–
Červonenkis [VC] subgraph classes, which we shall discuss in Chapter
8.



 
 



 
 

CHAPTER 6

Vapnik–Červonenkis Classes

We shall now take time out to talk about Vapnik–Červonenkis [VC]
classes of sets. In Chapter 8 we shall discuss the closely related notion
of VC subgraph classes.

6.0.4. Vapnik–Červonenkis class of sets. We say that a col-

lection C of subsets of a nonempty set X picks out a subset A of a finite
subset

{x1, . . . , xn} ⊂ X
if for some C ∈ C

A = {x1, . . . , xn} ∩ C.

A collection C is said to shatter {x1, . . . , xn} if it picks out all of its 2n

subsets.

VC index

Let X be an arbitrary nonempty set and let P (X ) denote the class of
all subsets of X . Let C be a subclass of P (X ). For any F ⊂ X with
|F | <∞, let

∆C (F ) = |{F ∩ C : C ∈ C}| .
Furthermore let for r ≥ 1

mC (r) = max
{

∆C (F ) : |F | = r
}
.

The VC index of a collection C is defined as being the smallest number
n for which no set of size n is shattered by C, that is

V (C) =

{
inf
{
r : mC (r) < 2r

}
∞, if mC (r) = 2r for all r ≥ 1.

Vapnik–Červonenkis class of sets

A collection of sets C is called a Vapnik–Červonenkis [VC] class if its
VC index V (C) is finite.

Hence a VC class of sets picks out strictly less that 2n subsets of any
subset {x1, . . . , xn} ⊂ X of size n ≥ V (C). In fact, it can be shown that
it can only pick out a polynomial number O

(
nV (C)−1) of subsets, which

27
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is much smaller than 2n−1. This is a consequence of the combinatorial
result due to Vapnik–Červonenkis (1971) given below.

Here are two elementary but instructive examples

Example of a VC class Let X = {1, 2, 3} and consider the class of
sets C = {{1} , {2, 3} , {3}}. The class C shatters all subsets of X of
size 1, since

{C ∩ {1} : C ∈ C} = {{1} , φ} ,
{C ∩ {2} : C ∈ C} = {{2} , φ} ,
{C ∩ {3} : C ∈ C} = {{3} , φ} .

However, C shatters no subsets of X of size 2, since

|{C ∩ {1, 2} : C ∈ C}| = |{{1} , {2} , φ}| = 3 < 22 = 4,

|{C ∩ {1, 3} : C ∈ C}| = |{{1} , {3} , φ}| = 3 < 22 = 4,

|{C ∩ {2, 3} : C ∈ C}| = |{{3} , {2, 3} , φ}| = 3 < 22 = 4.

Therefore V (C) = 2 and C is VC.

Example of a non-VC class Let X = {1, 2, 3, . . . , } and con-
sider the class of sets C = {{1} , {3} , {5} , . . . }∪ set of all subsets
of {2, 4, 6, . . . , }. Clearly C shatters no subset of X of size 2 or greater
consisting only of odd numbers. However for all r ≥ 1

mC (r) = 2r,

since |{C ∩ {2, 4, . . . , 2r} : C ∈ C}| = 2r for all r ≥ 1. Thus V (C) =∞
and hence C is not VC.

Theorem (VC (1971)) Let X be an arbitrary nonempty set and
C ⊂ P (X ) be a VC class with VC index V (C) = v < ∞, then for
all r ≥ v

(6.1) mC (r) ≤
v−1∑
j=0

(
r
j

)
≤ vrr−1.

Proof Choose r ≥ v and F ⊂ X with |F | = r. We have to show

∆C (F ) = |{F ∩ C : C ∈ C}| ≤
v−1∑
j=0

(
r
j

)
.

Let {F1, . . . , Fp} be the collection of all the subsets of F of size ≥ v.
We see that

p =
r∑
j=v

(
r
j

)
.
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Notice that (6.1) trivially holds if for all C ∈ C

(6.2) C ∩ F 6= Fi for all i = 1, . . . , p,

since in this case {F ∩ C : C ∈ C} contains no subset of size ≥ v. If
(6.2) does not hold, since C shatters no set of size ≥ v, for each Fi there
is an F 1

i ⊂ Fi such that F 1
i 6= C ∩ Fi for all C ∈ C. This implies that

{F ∩ C : C ∈ C} ⊂ B1,

where

B1 :=
{
B : B ⊂ F and B ∩ Fi 6= F 1

i for all i = 1, . . . , p
}
.

Step 1 In one special case the result follows at this step, namely if Fj
= F 1

j for all 1 ≤ j ≤ p, since in this case B 6= Fi for all i = 1, . . . , p
and each B ∈ B1. This says that B1 cannot contain any subset of size
≥ v, which implies that

∆C (F ) ≤ |B1| ≤
v−1∑
j=0

(
r
j

)
.

We shall show that by successive modifications of the F 1′
i s the general

case will reduce in a finite number of steps to the Step 1 special case.

Step 2 If Fj 6= F 1
j for some 0 ≤ j ≤ p, choose x1 ∈ F and put

F 2
i =

(
F 1
i ∪ {x1}

)
∩ Fi, i = 1, . . . , p.

Notice that F 2
i = F 1

i ∪ ({x1} ∩ Fi). Thus if x1 ∈ Fi, F 2
i = F 1

i ∪ {x1},
otherwise F 2

i = F 1
i . In other words, x1 gets added to F 1

i ⊂ Fi only if
x1 ∈ Fi. Define

B2 =
{
B ⊂ F : B ∩ Fi 6= F 2

i for all i = 1, . . . , p
}
.

We will prove that

|B1| ≤ |B2| .
Since

|B1| = |B1\B2|+ |B1 ∩ B2| and |B2| = |B2\B1|+ |B1 ∩ B2| ,

it suffices to show that there exists a one-to-one map T from B1\B2 to
B2\B1.

Lemma We claim that

T (B) = B\ {x1}

does the job.
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Proof Let B ∈ B1\B2, then by definition of B1 and B2, B∩Fi 6= F 1
i

for all i = 1, . . . , p and B ∩ Fj = F 2
j for at least one 1 ≤ j ≤ p. Since

B ∩ Fj = F 2
j =

(
F 1
j ∪ {x1}

)
∩ Fj = F 1

j ∪ ({x1} ∩ Fj) 6= F 1
j ,

we must have x1 ∈ Fj\F 1
j . Therefore x1 ∈ B for all B ∈ B1\B2. This

makes T a one-to-one map.

It remains to show that T (B) = B\ {x1} ∈ B2\B1 for all B ∈ B1\B2.
Let B ∈ B1\B2, then since x1 ∈ Fj\F 1

j and thus F 2
j = F 1

j ∪ {x1}, we
see that

(B\ {x1})∩Fj = (B ∩ Fj) \ {x1} = F 2
j \ {x1} = F 1

j ∪{x1} \ {x1} = F 1
j .

Thus B\ {x1} /∈ B1.
Next we must show that B\ {x1} ∈ B2, i.e.

(6.3) (B\ {x1}) ∩ Fi 6= F 2
i for i = 1, . . . , p.

Towards this end let i ∈ {1, . . . , p}, arbitrary, but fixed. We treat two
cases:

(i) If x1 ∈ Fi, then

x1 ∈ F 2
i =

(
F 1
i ∪ {x1}

)
∩ Fi = F 1

i ∪ {x1} ,
which implies (B\ {x1}) ∩ Fi 6= F 2

i , hence (6.3) holds in this case.

(ii) If x1 ∈ F\F 1
i , i.e. {x1} ∩ Fi = φ, then

F 2
i =

(
F 1
i ∪ {x1}

)
∩ Fi = F 1

i .

Therefore choosing B ∈ B1, we get (B\ {x1})∩Fi = B∩Fi 6= F 1
i = F 2

i ,
implying (6.3). �

Step 3 Continuing, if F 2
i = Fi for i = 1, . . . , p, then B2 cannot contain

any subset of F of at least size v, in which case the result follows.

Step 4 Whereas if Fj 6= F 2
j for some 0 ≤ j ≤ p, then we repeat the

previous construction. Choose x2 ∈ F with x2 6= x1 and put

F 3
i =

(
F 2
i ∪ {x2}

)
∩ Fi, i = 1, . . . , p,

and define

B3 =
{
B ⊂ F : B ∩ Fi 6= F 3

i for all i = 1, . . . , p
}
.

Another n − 2, n ≤ r, repetitions of this procedure with n ≤ v will
eventually generate classes B1, . . . ,Bn such that

|B1| ≤ · · · ≤ |Bn|
with

Bn = {B ⊂ F : B ∩ Fi 6= F n
i for all i = 1, . . . , p}

and F n
i = Fi for all i = 1, . . . , p, which completes the proof. �
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This proof was adapted from those of Lemma 8 in Gaenssler (1983)
and of Theorem 16 on page 18 of Pollard (1984). For another proof see
Theorem 3.6.2 of Giné and Nickl (2015).

Examples of VC classes of sets

(1) The collection C = {(−∞, t] : t ∈ R} is a VC class of index 2.
This follows from the fact that any singleton {x1} is shattered,
but no two point set {x1, x2} can be shattered. Notice that if
x1 < x2 then for no t ∈ R can we have (−∞, t] ∩ {x1, x2} =
{x2}

(2) The collection C = {(a, b] : a, b ∈ R, a < b} is a VC class of
index 3. This follows from the fact that any two set {x1, x2} is
shattered, but no three point set {x1, x2, x3} can be shattered.
Notice that if x1 < x2 < x3 then for no (a, b] ∈ C can we have
(a, b] ∩ {x1, x2, x3} = {x1, x3}

(3) More generally the set of all rectangles in Rd has VC index
2d+ 1. For a proof of this fact see Lemma 4.1 of Devoyre and
Lugosi (2001). Note that their VC dimension is the VC index
-1.

(4) If A =
{{
x : aTx ≥ b, x ∈ Rd

}
: a ∈ Rd, b ∈ R

}
has VC index

= d + 2. (This is a special case of (7) below. See Dudley
(1979).)

(5) The class of closed balls in Rd has VC index = d + 2. (See
Dudley (1979), where it is shown to follow from (7).)

(6) The class E of closed ellipsoids in Rd of the form {x : xTΣ−1x ≤
1, x ∈ Rd}, where Σ is positive definite and symmetric has VC
index ≤ d (d+ 1) /2 + 2. (See Corollary 4.2 of Devroye and
Lugosi (2001).)

(7) Let G be an m dimensional vector space of measurable real
valued functions defined on Rd. The class of sets

A = {{x : g (x) ≥ 0} : g ∈ G}

has VC index = m+ 1. (Theorem 7.2 of Dudley (1978).)

Proof of (7). Here is a proof of the ≤ m + 1 part. It suffices to
show that no set of size m + 1 can be shattered by sets of the form
{x : g (x) ≥ 0}. Fix {x1, . . . , xm+1} and let L be the linear mapping
from G to Rm+1 by

L (g) = (g (x1) , . . . , g (xm+1)) =: −→g .

Then the image of G

L (G) = {−→g : g ∈ G}
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is a linear subspace of Rm+1 of dimension not exceeding m. This implies
the existence of a non-zero vector −→γ ∈ Rm+1 that is orthogonal to
L (G), that is, for all g ∈ G,

−→γ · −→g =
m+1∑
i=1

γ1g (x1) + · · ·+ γm+1g (xm+1) = 0.

Without loss of generality we shall assume that there is at least one
γi < 0. Rearranging this sum we get

(6.4)
∑
γi≥0

γig (xi) = −
∑
γi<0

γig (xi) .

Suppose there is a g ∈ G such that {x : g (x) ≥ 0} picks out exactly
the xi on the left side of (6.4). Then all the terms on the left side
of (6.4) are nonnegative, while all those on the right hand side must
be negative. This is a contradiction. Thus {x1, . . . , xm+1} cannot be
shattered.

Going the other way, since G has dimension m there are points
x1, . . . , xm such that

{(g (x1) , . . . , g (xm)) : g ∈ G} = Rm.

Thus all subsets of such {x1, . . . , xm} are of the form {x : g (x) ≥ 0} ∩
{x1, . . . , xm} for some g ∈ G. Thus A shatters {x1, . . . , xm} . This
forces the VC index of A to equal m+ 1. �

This proof was taken from Pollard (1984) and Devroye and Lugosi
(2001) and the Wellner 2005 Delft, Empircal Process: Theory and
Application notes.. Notice that Examples (4), and (6) are special cases
of Example (7).

The following result is a useful tool to use VC–classes to construct new
VC–classes.

Lemma 6.1 (Lemmas 2.6.17 of van der Vaart and Wellner (1996)).
Let C and D be VC–classes of subsets of X and let φ : X 7→ Y and
ψ : Z 7→ X be fixed functions. Then the following classes are VC as
well.

(i) Cc = {Cc : C ∈ C} is VC.
(ii) C ∩D = {C ∩D : C ∈ C, D ∈ D} is VC.

(iii) C ∪D = {C ∪D : C ∈ C, D ∈ D} is VC.
(iv) φ (C) = is VC in Y if φ is one to one.
(v) ψ−1 (C) is VC in Z.

(v.i) For VC classes C and D in X and Y , respectively, C × D is
VC in X ×Y .
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Proof of (i) Note that for any set {x1, . . . , xn} ⊂ X andA ⊂ {x1, . . . , xn}
with B = {x1, . . . , xn} − A,

(6.5) C ∩ {x1, . . . , xn} = A if and only CC ∩ {x1, . . . , xn} = B.

To see this, note that if y ∈ B then necessarily y /∈ C, otherwise
y ∈ A, and vice versa, if y ∈ A then necessarily y /∈ CC . Thus (6.5)
holds. This means that if C does not shatter {x1, . . . , xn} there is a
A ⊂ {x1, . . . , xn} such that C ∩ {x1, . . . , xn} 6= A for all C ∈ C and
thus CC ∩ {x1, . . . , xn} 6= B for all CC ∈ CC , which implies that CC
does not shatter {x1, . . . , xn} . Now since C is VC there is an n ≥ 1
such that C shatters no subset {x1, . . . , xn} ⊂ X of size n and hence
CC shatters no subset {x1, . . . , xn} ⊂ X of size n. This implies that CC
is VC. In fact, V (C) = V

(
CC
)
. �

Proof of (ii) First note that for any {x1, . . . , xn} ⊂ X
{C ∩ {x1, . . . , xn} : C ∈ C} = {C1, . . . , CN} ,

where by (6.1) of Theorem (VC (1971) ) isN ≤ V (C)nV (C)−1. Similarly
for each Ci

|{D ∩ Ci ∩ {x1, . . . , xn} : D ∈ D}| ≤ V (D)nV (D)−1.

Thus

|{C ∩D ∩ {x1, . . . , xn} : C ∈ C, D ∈ D}| ≤ V (C)V (D)nV (C)+V (D)−2,

which for all large n is strictly less than 2n. This means that C ∩D is
VC. �

Proof of (iii) Note that by (i) the classes CC and DC are VC. Therefore
by (ii) the class CC ∩DC is VC. Finally by applying (i) again C ∪ D is
VC. �

Proof of (vi) First note that if C is VC in X and D is VC in Y then
trivially both {C × Y : C ∈ C} and {X ×D : D ∈ D} are VC in X ×Y .
Therefore by (ii), {C × Y ∩ X ×D = C ∩D : C ∈ C, D ∈ D} is VC in
X × Y .

The proofs of (iv) and (v) are straightforward and left to the reader.
�



 
 



 
 

CHAPTER 7

Glivenko-Cantelli Theorem

Before proceeding on, let us take time out of prove the Glivenko-
Cantelli theorem for the empirical measure indexed by a VC class of
sets. Let X,Xn, n ≥ 1, be a sequence of random variables defined on a
probability space (Ω,A, P ) and taking values in (S,S). Let C be a VC
class of subsets of S with VC index V (C). This means that it picks
out strictly less that 2n subsets of any subset {x1, . . . , xn} ⊂ X of size
n ≥ V (C). In fact, using Theorem (VC (1971)), it can be shown that
for some D > 0 the class C can only pick out a number ≤ DnV (C)−1.
For any C ∈ C define 1C (·) = 1 {· ∈ C}. We get

P (C) = E1C (X) and Pn (1C) =
1

n

n∑
i=1

1C (Xi) .

Our aim is to prove the following Glivenko-Cantelli theorem. (To avoid
measurability problems we shall assume that C is countable.)

Glivenko-Cantelli theorem With probability 1,

sup
C∈C
|Pn (1C)− P (C)| → 0, as n→∞.

Specializing to C =
{

(−∞, x] : x ∈ Rd
}

and Rd valued random vari-
ables, we get the classic Glivenko-Cantelli theorem, namely

sup
x∈Rd
|Fn (x)− F (x)| → 0, as n→∞.

Proof of Glivenko-Cantelli theorem We shall first derive a bound on

E sup
C∈C
|Pn (1C)− P (C)| .

Let ε1, . . . ,εn be independent Rademacher variables independent of the
Xi’s. By the symmetrization inequality

E sup
C∈C
|Pn (1C)− P (C)| ≤ 2

n
E sup

C∈C
|Sn (C)| ,

where

Sn (C) =
n∑
i=1

εi1 {Xi ∈ C} .

35
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We shall be using the following special case of

Hoeffding’s Inequality (Theorem 2 of Hoeffding (1963): Let
Sn =

∑n
i=1 εi. For all t ≥ 0

(7.1) P {|Sn| > t} ≤ 2 exp

(
− t

2

2n

)
.

Condition on Xi = xi for 1 ≤ i ≤ n. Notice that

{x : x ∈ {x1, . . . , xn} and 1C (x) = 1} = C ∩ {x1, . . . , xn}
and for n ≥ V (C) , by (6.1) of Theorem (VC 1971), the class C can
only pick out a number ≤ V (C)nV (C)−1 of such sets. Thus

P

{
sup
C∈C
|Sn (C)| > t|Xi = xi, 1 ≤ i ≤ n

}
≤ 2V (C)nV (C)−1 exp

(
− t

2

2n

)
.

Thus with v = V (C), for all z ≥ 0,

P

{
2

n
sup
C∈C
|Sn (C)| > z

}
≤ 2νnv−1 exp

(
−nz

2

8

)
.

Hence

P

{
2

n
sup
C∈C
|Sn (C)| > z

}

≤ 1

{
0 ≤ z ≤

√
8 log (2νnv−1)

n

}

+ 2νnv−1 exp

(
−nz

2

8

)
1

{
z >

√
8 log (2nv−1ν)

n

}
.

This implies that

2

n
E sup

C∈C
|Sn (C)| =

∫ ∞
0

P

{
2

n
sup
C∈C
|Sn (C)| > z

}
dz

≤
√

8 log (2νnv−1)

n
+ 2νnv

∫ ∞√
8 log(2νnv−1)

n

exp

(
−nz

2

8

)
dz.

Changing variables to u = z
√
n

2
gives

2νnv−1
∫ ∞√

8 log(2νnv−1)
n

exp

(
−nz

2

8

)
dz

=
νnv−1√

n

∫ ∞
√

2 log(2νnv−1)

exp

(
−u

2

2

)
du.
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Now for x ≥ 1

e−x
2/2 =

∫ ∞
x

ye−y
2/2dy ≥

∫ ∞
x

e−y
2/2dy

and for 0 ≤ x < 1,√
πe

2
e−x

2/2 ≥
∫ ∞
0

e−y
2/2dy ≥

∫ ∞
x

e−y
2/2dy.

Therefore for all x ≥ 0,√
πe

2
e−x

2/2 ≥
∫ ∞
x

e−y
2/2dy.

This inequality gives

νnv−1√
n

∫ ∞
√

2 log(2νnv−1)

exp

(
−u

2

2

)
du ≤ νnv−1

√
πe

2
exp

(
− log

(
2νnv−1

))
=

1√
n

√
πe

8
.

Thus for some constant D0 > 0

2

n
E sup

C∈C
|Sn (C)| ≤ D0√

n

(√
log n+ 1

)
,

which implies

(7.2) E sup
C∈C
|Pn (1C)− P (C)| ≤ D0√

n

(√
log n+ 1

)
.

Now buried in all of this is a submartingale. Define for n ≥ 1,

Mn = sup
C∈C
|nPn (1C)− nP (C)| .

To see that Mn is a submartingale notice by Jensen’s inequality that

E (Mn+1|X1, . . . , Xn) ≥

sup
C∈C
|E ((n+ 1)Pn+1 (1C)− (n+ 1)P (C) |X1, . . . , Xn)| = Mn.

We see that for any r ≥ 1 and γ > 0

P

{
max

2r<n≤2r+1

Mn

n
> γ

}
≤ P

{
max

2r<n≤2r+1
Mn > 2rγ

}
,

which by Doob’s inequality and (7.2) is

≤ EM2r+1

2rγ
≤ D0

√
2

γ
√

2r

(√
(r + 1) log 2 + 1

)
.
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Since
∞∑
r=1

D0

√
2

γ
√

2r

(√
(r + 1) log 2 + 1

)
<∞

and γ > 0 is arbitrary, we can conclude by an argument based on the
Borel-Cantelli lemma that w.p. 1,

Mn

n
→ 0, as n→∞.

�
Some of the ideas of this proof were taken from Devroye and Lugosi

(2001).

Remark Of course the Glivenko-Cantelli theorem has been extended
to the more general indexed by functions setup, namely, for appropriate
classes of measurable functions F , with probability 1,

sup
f∈F
|Pn (f)− P (f)| → 0, as n→∞.

For details refer to van der Vaart and Wellner (1996), Dudley (1999)
and Giné and Nickl (2015).



 
 

CHAPTER 8

VC Subgraph Class

In the following (S,S) denotes a measurable space.

Subgraph The subgraph of a function f : S 7−→ R is the subset of
S × R given by {(x, t) : t < f (x)}.
VC subgraph class A class of measurable real valued functions F
defined on (S,S) is called a VC subgraph class if the class of subgraphs

FG := {{(x, t) : t < f (x)} : f ∈ F}
forms a VC class of subsets of S×R, and with some abuse of notation
we write V (F) = V (FG).

Examples of VC subgraph classes

(1) If C is a VC class of index V (C) then F = {1C : C ∈ C} is a
VC subgraph class of index V (F) = V (C) .

(2) Any finite dimensional class of measurable functions F is a
VC subgraph class of index V (F) = dim (F) + 2.

(3) If φ is monotone and F is a VC subgraph class then so is φ◦F .
In particular,

{φ (λx+ t) : λ ≥ 0, t ∈ R}
is a VC subgraph class.

Proof of (1) We need to show that the class of subgraphs

FG := {{(x, t) : t < 1C (x)} : C ∈ C}
forms a VC class of subsets of S × R. Note that

{(x, t) : t < 1C (x)} = C × (−∞, 1) ∪ CC × (−∞, 0)

= S × (−∞, 1) ∪ C × (0, 1) .

Thus

{{(x, t) : t < 1C (x)} : C ∈ C ∈ C}
= {(S × (−∞, 1)) ∪ (C × (0, 1)) : C ∈ C} ,

which by applications of (vi) and (iii) of Lemma 6.1 is VC. With a little
thought, we see that V (F) = V (C) . For the proof of (2) see Lemma

39
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2.6.15 of van der Vaart and Wellner (1996). The proof of (3) can be
readily inferred from part (v) of the following lemma. �

Lemma 8.1 (Part of Lemma 2.6.18 of van der Vaart and Wellner
(1996)). Let F and G be VC subgraph classes of functions on S and let
ϕ : S → R and φ : R→ R be fixed functions. Then we have

(i) F ∧G = {f ∧ g : f ∈ F , g ∈ G} and F ∨G = {f ∨ g : f ∈ F ,
g ∈ G} are VC subgraph classes,,

(ii) {F > 0} = {{f > 0} : f ∈ F} is a VC class,
(iii) −F , F +ϕ and F ·ϕ are VC subgraph classes,
(iv) F ◦ψ = {f(ψ) : f ∈ F} for a function ψ : S ′ → S is a VC

subgraph class,,
(v) φ ◦ F is a VC subgraph class if φ is monotone.

The reader referred to van der Vaart and Wellner (1996) for the
proof of this lemma.

The following theorem shows that VC subgraph classes indeed have
polynomial covering numbers.

Theorem 8.2 (Version of Theorem 2.6.7 of van der Vaart and
Wellner (1996)). If F is a VC–subgraph class of measurable real val-
ued functions on (S,S) with measurable envelope F , it holds for all

probability measures Q on (S,S) for which 0 <
√
Q(F 2) <∞ that

N (ε
√
Q(F 2),F , dQ) ≤ A (V (F)) ε−2V (F), 0 < ε < 1,

where A (u) > 0 is a universal function of u > 0 and V (F) is the
VC–index of the class F

i.e,

(8.1) N (ε,F) ≤ A (V (F)) ε−2V (F), 0 < ε < 1.

Proof In the proof we write v = V (F). Let f1, . . . , fm be a maximal
collection of functions in F such that for i 6= j

Q |fi − fj|2 > ε2Q(F 2).

Then m = D(ε
√
Q(F 2),F , dQ), where D refers to the packing number

defined above. Choose points in S×R as follows: sample sr, 1 ≤ r ≤ k,
independently with distribution PF defined for A ∈ S by

PF (A) =
Q (1AF

2)

Q(F 2)
.

Then independently for each r given sr sample tr from the uniform
distribution on

[−F (sr) , F (sr)] , r = 1, . . . , k.
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By construction the vectors (sr, tr) , r = 1, . . . , k, are independent. Let
Gi denote the subgraph of fi

Gi = {(s, t) : s ∈ S, t ∈ R, t ≤ fi (s)} .
Notice that two different subgraphs pick out the same non-empty subset
of {(sr, tr) : r = 1, . . . , k} =: Sk if and only if (Gi −Gj) ∩ Sk = φ and
(Gj −Gi)∩Sk = φ. Therefore the probability that at least one pair of
graphs picks out the same set of points from the sample Sk is at most(

m

2

)
max
i6=j

P {Gi and Gj pick out the same sets of points}

=

(
m

2

)
max
i6=j

Πk
r=1P {(sr, tr) /∈ Gi ∆Gj}

=

(
m

2

)
max
i6=j

Πk
r=1 (1− P {(sr, tr) ∈ Gi ∆Gj}) .

Observe that

Gi ∆Gj = {(s, t) : s ∈ S, t ∈ R, t ∈ Ii,j (s)} ,
where

Ii,j (s) = interval with endpoints fi (s) and fj (s) .

Hence the last probability

=

(
m

2

)
max
i6=j

Πk
r=1 (1− P {tr ∈ Ii,j (sr)})

=

(
m

2

)
max
i6=j

(
1− 1

Q(F 2)

∫
|fi (sr)− fj (sr)|F 2 (sr) dQ (sr)

2F (sr)

)k
.

Now since fi (sr), fj (sr) ∈ [−F (sr) , F (sr)], we have

1

4
Q |fi − fj|2 ≤

1

2
Q (|fi − fj|F ) =

1

2

∫
|fi − fj|FdQ.

Thus the last term is

≤
(
m

2

)
max
i6=j

(
1− 1

Q(F 2)

∫
|fi − fj|2 dQ

4

)k

≤
(
m

2

)(
1− ε2

4

)k
≤
(
m

2

)
exp

(
−kε

2

4

)
≤ 1

2
exp

(
2 logm− ε2k

4

)
,

which is strictly less that 1 if k =
[
1+8 logm

ε2

]
and 0 < ε ≤ 1. So with

positive probability, the graphs pick out m different subsets from Sk
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and we have m graphs. But we know by (6.1) of Theorem (VC 1971)
that the sets Gi, 1 ≤ i ≤ m, can pick out at most νkv−1 subsets of any
sample of size k. By our choice of k,

νkv−1 = ν

[
1 + 8 logm

ε2

]v−1
.

We have thus proved that

m ≤ ν

[
1 + 8 logm

ε2

]v−1
.

So if n0 is the smallest positive integer such that (1 + 8 log n)v−1 ≤ n1/v

for all n ≥ n0, then either m ≤ n0, in which case,

m ≤ ν

[
1 + 8 log n0

ε2

]v−1
≤ νn

1/v
0 ε−2v.

or m > n0, in which case,

m ≤ ν

[
1 + 8 logm

ε2

]v−1
≤ νm1/vε−2(v−1),

that is

m(ν−1)/ν ≤ νε−2(v−1),

or

m ≤ νv/(v−1)ε−2v.

This says that m ≤
(
n0 ∨ νv/(v−1)

)
ε−2v, i.e., with B (v) = n0∨νv/(v−1),

m = D(ε
√
Q(F 2),F , dS) ≤

(
n0 ∨ νv/(v−1)

)
ε−2v := B (v) ε−2v.

We get from (5.3) and (5.4)

N
(
ε
√
Q(F 2),F , dS

)
≤ N

( ε
2
ε
√
Q(F 2),F , dS

)
≤ D

( ε
2
ε
√
Q(F 2),F , dS

)
≤ 22vB (v) ε−2v =: A (v) ε−2v.

�
Pieces of this proof were taken from Pollard (1984) and de la Peña and
Giné (1999). For more details about such classes of functions, we refer
to the book of van der Vaart and Wellner (1996).

Classes of VC-type A class of measurable real valued functions G
defined on a measurable space (S,S) with measurable envelope function
G such that for some constants C ≥ 1, ν > 0,

N (ε,G) ≤ Cε−ν , 0 < ε < 1
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will be said to be of VC-type. (The C can be any positive number.
However for applications latter on it is convenient for C ≥ 1.) The
previous result says that a VC-subgraph class is of VC-type. Here are
two results that show how to use classes of functions of VC-type to
construct new ones. We shall write

(8.2) ‖g‖∞ = sup
x∈S
|g(x)| .

Theorem 8.3 (Lemma A.1 of Einmahl and Mason (2000)). Let F
and G be two classes of measurable real valued functions on S, and let
F be a finite–valued measurable envelope function of F . Assume that
‖g‖∞ ≤ M for all g ∈ G, where M > 0 is a finite constant. Suppose
that for all probability measures Q on (S,S) with 0 < Q(F 2) <∞,

N (ε
√
Q(F 2),F , dQ) ≤ C1ε

−ν1 , 0 < ε < 1,

and for all probability measures Q

N (εM,G, dQ) ≤ C2ε
−ν2 , 0 < ε < 1,

where νi, Ci, i = 1, 2 are suitable positive constants. Then it follows for
all probability measures Q on (S,S) with 0 < Q(F 2) < ∞ that with
C3 = C1C2 > 0,

(8.3) N (εM
√
Q(F 2),FG, dQ) ≤ C3ε

−(ν1+ν2), 0 < ε < 1.

Proof Given a probability measure Q as above choose functions

f1, · · · , fm ∈ F ,where m = mε ≤ C1ε
−ν1 ,

so that
sup
f∈F

min
1≤i≤m

dQ(f, fi) ≤ ε[Q(F 2)]1/2

and functions g1, · · · , gn ∈ G, where n = nε ≤ C2ε
−ν2 , so that

sup
g∈G

min
1≤j≤n

dQ̃(g, gj) ≤ εM,

where Q̃ is the probability measure with Q-density x→ F 2(x)/Q(F 2).
Then it easily follows that

sup
f,g

min
i,j

dQ(fg, figj) ≤M sup
f∈F

min
1≤i≤m

dQ(f, fi) + sup
g∈G

min
1≤j≤n

dQ(Fg, Fgj)

≤ εMQ(F 2)1/2 +Q(F 2)1/2 sup
g∈G

min
1≤j≤n

dQ̃(g, gj) ≤ 2εMQ(F 2)1/2.

Thus for 0 < ε < 1,

N (2εM(Q(F 2))1/2,FG, dQ) ≤ C1C2ε
−ν1−ν2 ,

which obviously implies the assertion. �

Also trivially we get:
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Theorem 8.4. Let F 1 and F2 be two classes of measurable real
valued functions on S, and let F1 and F2 be a finite–valued measur-
able envelope function of F1 and F2, respectively. Suppose that for all
probability measures Q with 0 < Q(F 2

i ) <∞,

N (ε
√
Q(F 2

i ),Fi, dQ) ≤ Ciε
−νi , 0 < ε < 1,

where νi > 0, Ci > 0, i = 1, 2 are suitable constants. Then it follows
for all probability measures Q with 0 < Q(F 2

1 + F 2
2 ) < ∞ such with

C3 = C1C2

(√
2
)ν1+ν2

,

(8.4) N (ε
√
Q(F 2

1 + F 2
2 ),F1 + F2, dQ) ≤ C3ε

−(ν1+ν2), 0 < ε < 1.

We shall also need the following VC-type moment bound.

Theorem 8.5. (Proposition A.1 of Einmahl and Mason (2000)) Let
G be a pointwise measurable class of bounded functions with envelope
function G such that for some constants C ≥ 1, ν ≥ 1 and 0 < σ ≤
1/ (8C), the following conditions hold:

(A.1) EG2(X) ≤ β2,
(A.2) N (ε,G) ≤ Cε−ν , 0 < ε < 1,
(A.3) σ2

0 := supg∈G Eg
2(X) ≤ σ2,

(A.4) supg∈G ‖g‖∞ ≤
√
nσ2/ log(β∨1/σ)

2
√
υ+1

.

Then we have for some absolute constant A,

(8.5) E

(∥∥∥∥∥ 1√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥
G

)
≤ A

√
υσ2 log(β ∨ 1/σ).

For a similar bound refer to Giné and Guillou (2001). A more refined
version of (8.5) is given as Proposition 1 in Einmahl and Mason (2005.
It is obtained by a skillful modification of the proof of the above result,
and is the following.

Proposition (Proposition 1 of EM (2005)) Let G be a pointwise
measurable class of bounded functions such that for some constants
C, ν ≥ 1 and 0 < σ ≤ β and envelope function G the following
conditions hold:
(i) E[G(X)2] ≤ β2;
(ii) N (ε,G) ≤ Cε−ν , 0 < ε < 1;
(iii) σ2

0 := supg∈G IE[g(X)2] ≤ σ2;

(iv) supg∈G ‖g‖∞ ≤ 1
4
√
ν

√
nσ2/ log(C1β/σ), where C1 = C1/ν ∨ e.
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Then we have for some absolute constant A

(8.6) E

(∥∥∥∥∥ 1√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥
G

)
≤ A

√
νnσ2 log(C1β/σ).

Remark The moment bound (8.5) will play an important role in the
proofs of the uniform consistency results in Chapter 11 and the strong
approximation results in Chapter 12.

To prove (8.5) we shall need the following inequality that can be
inferred from Lemma 5.2 of Giné and Zinn (1984) (also referred to as

the ”square-root trick”) by choosing λ =
√
t/2 −

√
2n1/4σ0 − 2ρ ≥√

t/32. In the statement of Inequality GZ, given below, we use the
notation: for any x ∈ Sn and g1, g2 ∈ G

dxn,2(g1, g2) =
1

n

n∑
i=1

(g1(xi)− g2(xi))2,

µn denotes that probability measure induced on Sn = S × · · · × S (n
times) by S1, . . . , Sn i.i.d. taking values in S and (µn)∗ signifies the
outer probability measure of µn, see (2.5).

Inequality GZ (Giné and Zinn (1984)) Let G be a pointwise measur-
able class of functions on S satisfying for g ∈ G,

||g||∞ ≤M.

Then we have for any t ≥ 32
√
nσ2

0 and m ≥ 1

P{sup
g∈G

n∑
i=1

g2(Xi) ≥ t
√
n}

≤ 4(µn)∗{x : N (ρ/n1/4,G, dxn,2) ≥ m}+ 8m exp(−t
√
n/
(
64M2

)
),

where σ2
0 := supg∈G E[g2(X)], ρ = min(

√
t/8, n1/4).

Proof of Proposition A.1 of Einmahl and Mason (2000). We shall
follow exactly the proof given in Einmahl and Mason (2000). Using
the Hoffmann–Jørgensen inequality (see (8.17) below) it is enough to
show that for some absolute constant A4,

(8.7) tn ≤ A4

√
νnσ2 log(β ∨ 1/σ),

where

tn = inf{t > 0 : P{||
n∑
i=1

εig(Xi)||G > t} ≤ 1

24
}.
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Let

Fn :=

{
x ∈ Sn : n−1 sup

g∈G

n∑
j=1

g2(xj) ≤ 64σ2

}
and

Gn :=

{
x ∈ Sn : n−1

n∑
j=1

G2(xj) ≤ 256β2

}
.

It is obvious that for any t > 0,

P

{
||

n∑
i=1

εig(Xi)||G > t

}

(8.8) ≤
∫
Fn∩Gn

P

{
||

n∑
i=1

εig(xi)||G > t

}
µn(dx) + µn(FC

n ) + µn(GC
n ).

To bound the first term in (8.8) we use a well known result of Jain
and Marcus (1978) which allows us to conclude that for any x ∈ Sn

and for some universal constant K

E||
n∑
i=1

εig(xi)||G

≤ E|
n∑
i=1

εig0(xi)|+K
√
n

∫ ∞
0

√
logN(ε,G, dn,2)dε,(8.9)

where g0 is an arbitrary function in G, and where dn,2 = dxn,2 is defined
as in the statement of Inequality GZ.

We trivially have on Fn,

(8.10) E|
n∑
i=1

εig0(xi)| ≤ (
n∑
i=1

g20(xi))
1/2 ≤ 8

√
nσ.

Moreover, it is easy to see that for x ∈ Fn and g1, g2 ∈ G,

d2n,2(g1, g2) ≤
2

n

n∑
i=1

{g21(xi) + g22(xi)} ≤ 256σ2,

and, consequently, N (ε,G, dn,2) = 1, for ε > 16σ, whenever x ∈ Fn.
Further note that we have for x ∈ Gn,

N (ε,G, dn,2) = N (
√
Qn(G2)ε/

√
Qn(G2),G, dn,2) ≤ N (ε/16β,G),

where Qn = 1
n
(δx1 + · · · + δxn). By assumption (A.2) this means that

whenever x ∈ Gn and 0 < ε ≤ 16σ we get

(8.11) N (ε,G, dn,2) ≤ C16νβνε−ν ,
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Thus it is easy to see that on Fn ∩Gn,

(8.12)

∫ ∞
0

√
logN (ε,G, dn,2)dε ≤ A5

√
νσ2 log(β ∨ 1/σ).

Combining (8.8), (8.9), (8.10) and (8.12), it follows that on Fn ∩Gn,

(8.13) E||
n∑
i=1

εig(xi)||G ≤ A6σ
√
nν log(β ∨ 1/σ),

which in turn implies that for x ∈ Fn ∩Gn

(8.14) P{||
n∑
i=1

εig(xi)||G ≥ t} ≤ 1

96
,

whenever t ≥ 96A6σ
√
nν log(β ∨ 1/σ).

Recalling (8.8) and (8.14), we see in light of the Hoffmann–Jørgensen
inequality (8.17) that Proposition A.1 is established once we have
shown

(8.15) µn(F c
n) + µn(Gc

n) ≤ 1

32
.

To bound µn(Gc
n), we use Markov’s inequality to get

µn(Gc
n) ≤ P{

n∑
i=1

G2(Xi) ≥ n256β2} ≤ 1/256.

It remains to show that

(8.16) µn(F c
n) ≤ 7

256
.

The proof of (8.16) is based upon Inequality GZ. Using this inequality
with t = 64

√
nσ2 and assumption (A.4), which says that we can take

M =

√
nσ2/ log(β ∨ 1/σ)

2
√
υ + 1

,

we find that for any m ≥ 1,

µn(F c
n) ≤ 4(µn)∗{x : N (σ,G, dn,2) ≥ m}+8m exp(−4(ν+1) log(β∨1/σ)).

Thus, recalling that on the event Gn,

N (σ,G, dn,2) ≤ C16νβνσ−ν ,

we conclude after choosing m = [3
2
C16νβνσ−ν ] that

µn(F c
n) ≤ 4µn(Gc

n) + 12C16νβνσ−ν exp(−4(ν + 1) log(β ∨ 1/σ))

≤ 1

64
+ 12C(β ∨ 1/σ)−4.
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Since 1/σ ≥ 8C ≥ 8, we easily get (8.16) from the last bound, thereby
completing the proof of Proposition A.1. �

Remark We note that the moment bound (8.5) implies that a bounded
class of pointwise measurable functions F of VC-type is Donsker for all
P . To verify this we shall first show that such a class F satisfies the
asymptotic equicontinuity condition (3.3), namely,

lim
δ↘0

lim sup
n→∞

P

(
sup

dP (f,g)≤δ,f,g∈F
|αn (f)− αn (g)| > ε

)
= 0.

Assume that the functions in F are bounded by M and F has a mea-
surable envelope function F such that for some constants D1, ν1 ≥ 1,
β1, the following conditions hold: (i) EF 2(X) ≤ β2

1 and (ii) N (ε,F) ≤
D1ε

−ν1 , 0 < ε < 1. For any 0 < δ < 1 define

Gδ = {f − g : f, g ∈ F and dQ (f, g) < δ} .

This class has envelope G = 2F and satisfies EG2(X) ≤ β2 = 4β2
1 and

by (8.4) fulfills N (ε,Gδ) ≤ Cε−ν , 0 < ε < 1 with ν = 2ν1 and some
C ≥ 1, independent of δ. Moreover, we see by the definition of Gδ that
for δ > 0 small enough

σ2
0 := sup

g∈Gδ
Eg2(X) ≤ δ2 ≤ 1/ (8C)

and since the functions in Gδ are bounded by 2M , for all large enough
n

sup
g∈Gδ
‖g‖∞ ≤

√
nδ2/ log(β ∨ 1/δ)

2
√
υ + 1

.

Thus for a universal constant A, we have

E‖ 1√
n

n∑
i=1

εig(Xi)‖Gδ ≤ A
√
υδ2 log(β ∨ 1/δ),

which, in combination with our symmetrization inequality, gives

E

(
sup

dP (f,g)≤δ,f,g∈F
|αn (f)− αn (g)|

)
= E ‖αn‖Gδ

≤ 2√
n
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
Gδ

≤ 2A
√
υδ2 log(β ∨ 1/δ).

Thus

lim
δ↘0

lim sup
n→∞

E ‖αn‖Gδ = 0,
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which using Chebyshev’s inequality implies the equicontinuity con-
dition. Thus F is Donsker for any P . (The condition N (ε,F) ≤
D1ε

−ν1 , 0 < ε < 1 implies that (F , dP ) is totally bounded.)

One of the essential tools to prove Proposition A.1 of Einmahl and Ma-
son (2000) was the Hoffmann-Jørgensen inequality as stated in Propo-
sition 6.8 in Ledoux and Talagrand (1991), who give a very nice proof.

[Hoffmann–Jørgensen, 1974] Let X1, . . . , Xn be independent sym-
metric random variables taking values in a Banach space with norm
‖ · ‖, then it holds for all p ≥ 1 that

(8.17) E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤ 2 · 3p
(
E max

1≤i≤n
‖Xi‖p + tp0

)
,

where t0 = inf{t > 0 : P{‖
∑n

i=1Xi‖ ≥ t} ≤ 1/(8 · 3p)}.
The Hoffmann–Jørgensen inequality is a very powerful tool in the

study of empirical processes. Here is an example of its use. Let F be a
pointwise measurable class of functions bounded by M . Assume that

‖αn‖F = OP (1) .

This holds, for instance, if F is P-Donsker. Now let

α′n (f) =
n∑
i=1

f (X ′i)− nPf (X)√
n

be an independent copy of αn. We see then that

‖αn − α′n‖F = OP (1) .

This implies that for every γ > 1 there exists a u > 0 such that for all
n ≥ 1

P {‖αn − α′n‖F ≥ u} ≤ γ−1.

In particular, for γ = 8 · 3 = 24, there exists u > 0 such that for all
n ≥ 1

P {‖αn − α′n‖F ≥ u} ≤ 1/24.

Applying the Hoffmann–Jørgensen inequality to the symmetric sum
αn − α′n with p = 1 we get for all n ≥ 1

E ‖αn − α′n‖F ≤ 6

(
E max

1≤i≤n

∥∥∥∥f (Xi)− f (X ′i)√
n

∥∥∥∥
F

+ t0

)
,

which since u ≥ t0 and each f is bounded by M , gives the bound

E ‖αn − α′n‖F ≤
12M√
n

+ 6u.
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Now by Jensen’s inequality

E ‖αn‖F ≤ E ‖αn − α′n‖F ≤
12M√
n

+ 6u.

Specializing to the empirical process indexed by a VC class of sets C,
notice that we had previously obtained the rougher bound

E sup
C∈C
|αn (1C)| ≤ D0

(√
log n+ 1

)
.



 
 

CHAPTER 9

Bracketing

Bracketing is another useful notion to study equicontinuity. Let G be a
class of measurable real-valued functions defined on a measurable space
(S,S). A second way to measure the size of a class G is to use L2(P )-
brackets. Let l ∈ M and u ∈ M be such that l ≤ u and dP (l, u) < ε.
The pair of functions l, u form an ε-bracket [l, u] consisting of all the
functions f ∈ G such that l ≤ f ≤ u. Let N[ ](ε,G, dP ) be the minimum
number of ε-brackets needed to cover G. Notice that trivially we have
N (ε,G, dP ) ≤ N[ ](ε/2,G, dP ).

Ossiander (1987) has shown that if G is a class of real valued measurable
functions defined on (S,S) in L2(S,S, P ) satisfying∫

[0,1]

√
logN[ ](s,G, dP ) ds <∞,

then G is Donsker.

Here are two examples.

(i) Let G be the class of all functions of bounded variation on R
taking values in [−1, 1] then for some constant K independent
of P

logN[ ](ε,G, dP ) ≤ Kε−1.

This result can be deduced from Theorem 2.7.5 of van der
Vaart and Wellner (1996).

(ii) Let G be the class of all functions defined on [0, 1] taking values
in [0, 1] such that for all g ∈ G and s, t ∈ G, |g (s)− g (t)| ≤
|s− t| then for some constant K independent of P

logN[ ](ε,G, dP ) ≤ Kε−1.

This is exercise 5 on page 290 of van der Vaart and Wellner
(1998) and is a special case of (i). Here is a simple proof of a
version of (ii) showing that

logN[ ](ε,G, dP ) ≤ 2ε−1 log
(
2ε−1

)
.

51
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(In applications the log (2ε−1) plays no significant role.) Se-
lect any 0 < ε < 1 and choose [− log2 (ε)] + 1 = k. Clearly
ε−1 ≤ 2k ≤ 2ε−1. Divide [0, 1] into 2k disjoint intervals of
length 2−k. Consider the class of all functions defined on [0, 1]

of the form f (u) =
∑2k

i=1 ui1 {u ∈ Ii} where each ui takes val-

ues in
{
j2−k, j = 0, . . . , 2k

}
. Clearly there are

(
2k
)2k+1

such
functions and for any g ∈ G there is a pair of such functions
f1 and f2 such that f1 ≤ g ≤ f2 and 0 ≤ f2 − f1 < 2−k+1,
which since 2k ≤ 2ε−1 , says 0 ≤ f2 − f1 < ε. This implies
that logN[ ](ε,G, dP ) ≤ 2k+1 log

(
2k
)
≤ 4ε−1 log (2ε−1) .

9.0.5. Bracketing moment bound. For any 0 < σ < 1, set

(9.1) J (σ,G) =

∫
[0,σ]

√
1 + logN[ ](s,G, L2(P )) ds

and

(9.2) a (σ,G) =
σ√

1 + logN[ ](σ,G, L2(P ))
.

Lemma 19.34 in van der Vaart (1998) gives the following moment
bound. (Note that a +1 is needed, as in (9.1) and (9.2), in his defini-
tions of J (σ,G) and a (σ,G). See Theorem 7.6 in Jon Wellner’s Special
Topics Course Spring 2005, Delft Technical University, referenced in
the Preface.)

Moment inequality. Let ξ, ξ1, . . . , ξn be i.i.d. and assume that G has
a measurable envelope function G and E (g2 (ξ)) < σ2 < 1 for every
g ∈ G. We have, for a universal constant A,

E∗

(∥∥∥∥∥ 1√
n

n∑
i=1

(g(ξi)− Eg(ξi))

∥∥∥∥∥
G

)
≤ A

[
J (σ,G) +

√
n E

(
G (ξ) 1

{
G (ξ) >

√
n a(σ,G)

})]
.(9.3)

In Chapter 12 we shall need of the following symmetrized version
of (9.3). Let ε be a Rademacher variable, i.e. P{ε = 1} = P{ε =
−1} = 1/2, and consider independent Rademacher variables ε1, . . . , εn
independent of ξ1, . . . , ξn. From a special case of the symmetrization
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inequality (5.1), we have for any class of functions G in L1 (P )

1

2
E

∥∥∥∥∥
n∑
i=1

εi (g(ξi)− Eg (ξ))

∥∥∥∥∥
G

≤ E

∥∥∥∥∥
n∑
i=1

(g(ξi)− Eg (ξ))

∥∥∥∥∥
G

≤ 2E

∥∥∥∥∥
n∑
i=1

εig(ξi)

∥∥∥∥∥
G

.

In particular we get

E

∥∥∥∥∥
n∑
i=1

εig(ξi)

∥∥∥∥∥
G

≤ E

∥∥∥∥∥
n∑
i=1

εi (g(ξi)− Eg (ξ))

∥∥∥∥∥
G

+ E

∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ‖Eg (ξ)‖G

≤ 2E

∥∥∥∥∥
n∑
i=1

(g(ξi)− Eg (ξ))

∥∥∥∥∥
G

+ σ
√
n.(9.4)

Thus we readily get from (9.4) with A3 = 2A +1 and noting that the
integrand of J (σ,G) is greater than or equal to 1,

1√
n
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
G

(9.5) ≤ A3

[
J (σ,G) +

√
n E

(
G (ξ) 1

{
G (ξ) >

√
n a(σ,G)

})]
.

Clearly these bracketing bounds can be used to establish the equicon-
tinuity condition (3.3). Inequality (9.3) is proved by the method of
chaining. We will not have time to discuss this method here. See de
la Peña and Giné (1999) for a nice exposition of chaining. Also see
Section 4 of Giné, Mason and Zaitsev (2003). They play an important
role in establishing the strong approximation results of Berthet and
Mason (2006) (see Chapter 12) and Kevei and Mason (2016).

An instructive example

We shall finish this chapter with a instructive example, which will
lead to a uniform in bandwidth consistency result for the Nadaraya-
Watson regression estimator at a fixed point. With more care in our
analysis the rates that we obtain can be substantially improved. See
the remark at the end of this example.

Let (X, Y ) , (X1, Y1) , (X2, Y2) . . . be i.i.d. R2 valued random vec-
tors. Assume that X has marginal density fX satisfying

(M) fX ≤M for some 0 < M <∞.
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Fix x0 ∈ R and consider the class of functions of (x, y) ∈ R2

Gx0 =

{
ϕ (y)H

(∣∣∣∣x0 − xγ

∣∣∣∣) : 0 < γ ≤ 1

}
,

where ϕ is a measurable function on R and H is a nonnegative nonin-
creasing function defined on [0,∞) such that

(9.6) H is bounded by a constant ρ

and

(9.7)

∫ ∞
0

H (u) du =: ‖H‖1 <∞.

Assume that (X, Y ), H and ϕ satisfy for a fixed x0 the condition

(9.8) sup
{
E
(
ϕ2 (Y ) |X = x

)
: H (|x0 − x|) 6= 0

}
=: θ2 <∞.

Notice that for all 0 ≤ γ ≤ λ ≤ 1,

E

(
ϕ (Y )H

(∣∣∣∣x0 −Xγ
∣∣∣∣)− ϕ (Y )H

(∣∣∣∣x0 −Xλ
∣∣∣∣))2

=

∫
R
E

(
ϕ2 (Y )

{
H

(∣∣∣∣x0 − xγ

∣∣∣∣)−H (∣∣∣∣x0 − xλ

∣∣∣∣)}2

|X = x

)
fX (x) dx.

Next note since H (|x0 − x|) = 0 implies both H
(∣∣∣x0−xγ ∣∣∣) = 0 and

H
(∣∣x0−X

λ

∣∣) = 0, that by (9.8) the last term is

≤ θ2M

∫
R

(
H

(∣∣∣∣x0 − xγ

∣∣∣∣)−H (∣∣∣∣x0 − xλ

∣∣∣∣))2

dx

= 2θ2M

∫ ∞
0

(
H

(
u

γ

)
−H

(u
λ

))2

du,

which by (9.6) is

≤ 2θ2M%

∫ ∞
0

(
H
(u
λ

)
−H

(
u

γ

))
du

(9.9) = 2θ2M% (λ− γ)

∫ ∞
0

H (u) du =: C (λ− γ) .

From this inequality one can readily show that the class of functions
Gx0 satisfies the bracketing condition

(9.10) N[ ](ε,Gx0 , dP ) ≤ Dε−2, 0 < ε < 1,

for some D > 1. To see this, choose any 0 < ε < 1 and let

λk =
kε2

C ∨ 1
, for k = 0, . . . ,

[
C ∨ 1

ε2

]
+ 1 =: N (ε) ,
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where [x] denotes the integer part of x. Define the functions gk on R2

for k = 1, . . . ,N (ε), by

gk (x, y) = ϕ (y)H

(∣∣∣∣x0 − xλk

∣∣∣∣)
and set g0 = 0. Let

hk (x, y) = gk (x, y) , if ϕ (y) ≥ 0; hk (x, y) = gk+1 (x, y) , if ϕ (y) < 0,

and

hk (x, y) = gk+1 (x, y) , if ϕ (y) ≥ 0; hk (x, y) = gk (x, y) , if ϕ (y) < 0.

Clearly since H is non-negative and non-increasing, for each k = 0,. . . ,
N (ε)− 1 we have for λk ≤ γ ≤ λk+1.,

hk (x, y) ≤ ϕ (y)H

(∣∣∣∣x0 − xγ

∣∣∣∣) ≤ hk (x, y) .

Moreover, we have for each k = 0, . . . ,N (ε)−1, by (9.9) and construc-
tion that

dP
(
hk, hk

)
=

√
E
(
hk (X, Y )− hk (X, Y )

)2 ≤ ε.

Therefore, trivially, the ε-brackets
[
hk, hk

]
, k = 0, . . . ,N (ε)− 1, cover

Gx0 . Also it is easy to check that for some D > 1

N[ ](ε,Gx0 , dP ) ≤ N (ε) ≤ Dε−2.

For 0 < γ ≤ 1 and a fixed x0 ∈ R, define the process

Zn (γ) =
1√
n

n∑
i=1

{
ϕ (Yi)H

(∣∣∣∣x0 −Xi

γ

∣∣∣∣)− E (ϕ (Y )H

(∣∣∣∣x0 −Xγ
∣∣∣∣))} ,

and set Zn (0) = 0. We shall apply the moment inequality (9.3) to the
class Gx0 to bound

E

(
sup

0≤γ≤1
|Zn (γ)|

)
.

Notice that for each

g (x, y) = ϕ (y)H

(∣∣∣∣x0 − xγ

∣∣∣∣) ∈ Gx0 ,
we have

Eg2 (X, Y ) = E

(
ϕ (Y )H

(∣∣∣∣x0 −Xγ
∣∣∣∣))2

≤ 2θ2Mγ%

∫ ∞
0

H (u) du ≤ 2θ2M%

∫ ∞
0

H (u) du.
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We shall assume that

σ2 := 2θ2M%

∫ ∞
0

H (u) du < 1,

otherwise we can divide our functions by a sufficiently large constant.
Clearly the function of (x, y)

G (x, y) := ρ |ϕ (y)| 1 {H (|x0 − x|) > 0} .

is an envelope function for the class Gx0 , and (9.8) implies that

(9.11) EG2 (X, Y ) ≤ θ2ρ2.

We get from (9.10) that

J (σ,Gx0) =

∫
[0,σ]

√
1 + logN[ ](s,Gx0 , dP ) ds

≤
∫
[0,σ]

√
1 + log (Ds−2)ds ≤

∫
[0,1]

√
1 + log (Ds−2)ds =: l (σ)

and noting that l (σ) ≥
√

1 + logN[ ](σ,Gx0 , dP ), we get

a (σ,Gx0) =
σ√

1 + logN[ ](σ,Gx0 , dP )
≥ σ

l (σ)
.

We obtain from (9.3) that

E

(
sup

0≤γ≤1
|Zn (γ)|

)
= E

∥∥∥∥∥ 1√
n

n∑
i=1

(g(Xi, Yi)− Eg(X, Y ))

∥∥∥∥∥
Gx0


(9.12) ≤ A

[
l (σ) +

√
n E

(
G (X, Y ) 1

{
G (X, Y ) > σ

√
n/l (σ)

})]
.

We get by Markov’s inequality that

P

{
G (X, Y ) >

σ
√
n

l (σ)

}
≤ EG2 (X, Y )

(
l2 (σ)

σ2n

)
.

Therefore the right side of (9.12) is

≤ A

(
l (σ) +

l (σ)EG2 (X, Y )

σ

)
.

Hence by (9.11)

(9.13) E

(
sup

0≤γ≤1
|Zn (γ)|

)
≤ A

(
l (σ) +

l (σ) θ2ρ2

σ

)
.

Application to the uniform in bandwidth consistency of the
Nadaraya-Watson estimator at at fixed point
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Fix x0 ∈ R and consider the kernel estimator of

E (ϕ (Y ) |X = x0) fX (x0) =: Ψ (x0)

based on (X1, Y1) , . . . , (Xn, Yn), n ≥ 1, given by

(9.14) Ψn (x0, γ) =
1

nγ

n∑
i=1

ϕ (Yi)K

(
x0 −Xi

γ

)
,

as well as the kernel density estimator of fX (x0),

(9.15) fn (x0, γ) =
1

nγ

n∑
i=1

K

(
x0 −Xi

γ

)
,

where 0 < γ ≤ 1, K is a kernel such that K (u) = H (|u|) , with
H being a nonnegative nonincreasing function on [0,∞) and bounded
by a constant ρ, satisfying (9.7) and (9.8). By kernel we include the
requirement that ∫

R
K (u) du = 2

∫ ∞
0

H (u) du = 1.

Let {hn} be a sequence of positive constants satisfying

(h) hn → 0 and
√
nhn →∞, as n→∞.

We get from (9.13) that for any choice of sequences {hn} and {bn},
such that {hn} satisfies (h), hn < bn ≤ 1 and bn → 0
(9.16)

E

[
sup

hn≤γ≤bn
|Ψn (x0, γ)− EΨn (x0, γ)|

]
= O

(
1/
(√

nhn
))

= o (1)

and from (9.13) with ϕ = 1
(9.17)

E

[
sup

hn≤γ≤bn
|fn (x0, γ)− Efn (x0, γ)|

]
= O

(
1/
(√

nhn
))

= o (1) .

Under suitable conditions on the density fX the following special cases
of Bochner’s theorem (see the Bochner lemma below) hold

(9.18) E

[
ϕ (Y )K

(
x0 −X
γ

)]
→ Ψ (x0) , as γ ↘ 0,

and

(9.19) E

[
K

(
x0 −X
γ

)]
→ fX (x0) , as γ ↘ 0.
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Next (9.16) and (9.17) in combination with (9.18) and (9.19) give

(9.20) E

[
sup

hn≤γ≤bn
|Ψn (x0, γ)−Ψ (x0)|

]
= o (1)

and

(9.21) E

[
sup

hn≤γ≤bn
|fn (x0, γ)− fX (x0)|

]
= o (1) .

Consider the Nadaraya-Watson estimator of E (ϕ (Y ) |X = x0) at a
fixed point x0 given by

(9.22) Ψn (x0, γ) /fn (x0, γ) .

The uniform in bandwidth statements (9.20) and (9.21) imply after
a little algebra that whenever fX is continuous and positive at x0
the following uniform in bandwidth consistency result holds for the
Nadaraya-Watson estimator at a fixed point x0

(9.23) sup
hn≤γ≤bn

|Ψn (x0, γ) /fn (x0, γ)− E (ϕ (Y ) |X = x0)| = oP (1) .

Dony and Einmahl (2009) show assuming that ϕ (Y ) satisfies a condi-
tional p > 2 moment and using exponential inequalities that under an
alternative set of regularity conditions, which include a VC subgraph
assumption, that w.p. 1,

(9.24) sup
hn≤γ≤bn

|Ψn (x0, γ) /fn (x0, γ)− E (ϕ (Y ) |X = x0)| = o (1) ,

as long as lim infn→∞ nhn/ (log n)2/(p−2) > 0, hn → 0, bn ≥ hn and
bn → 0. For a uniform in bandwidth/interval version of (9.24) refer
to Corollary 2 in Einmahl and Mason (2005) and Theorem 4.1 of Ma-
son (2012). Their proofs use the methods of Chapter 11. The rate
nhn/ log log n → ∞ and hn → 0 is necessary to obtain almost sure
pointwise consistency for the kernel density estimator. Refer to De-
heuvels (1974). Dony and Einmahl (2009) obtain (9.24) under this
rate when ϕ (Y ) satisfies a conditional exponential moment condition.

Remark Inequality (9.13) can be considerably refined along the lines
of the proof of the moment bounds in Theorem 11.1 between equations
(11.27) and (11.29). This would lead to substantial improvement in
the rates at which hn → 0 to give consistency of the Nadaraya-Watson
estimator as in (9.23). This is left to the interested reader.

In this example we used the following version of Bochner’s theorem.
See Bosq and Lecoutre (1987).

Lemma (Bochner) Assume that K is a kernel such that K (u) =
H (|u|) , with H being a nonnegative nonincreasing function on [0,∞)
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and bounded by a constant ρ, satisfying (9.7) and (9.8), and fX satisfies
(M). Further assume that

E (ϕ (Y ) |X = x) fX (x) =: Ψ (x)

is continuous at x0. Then

(9.25) E

[
γ−1ϕ (Y )K

(
x0 −X
γ

)]
→ Ψ (x0) , as γ ↘ 0.

Proof Notice that∣∣∣∣E [γ−1ϕ (Y )K

(
x0 −X
γ

)]
−Ψ (x0)

∣∣∣∣
=

∣∣∣∣∫
R

(Ψ (x)−Ψ (x0)) γ
−1K

(
x0 − x
γ

)
dx

∣∣∣∣
=

∣∣∣∣∫
R

(Ψ (x0 − γy)−Ψ (x0))K (y) dy

∣∣∣∣ ,
which for any B > 0 is
(9.26)

≤ 2 sup
|y|≤B

|Ψ (x0 − γy)−Ψ (x0)|
∫
R
K (y) dy +M

∫
|y|>B

K (y) dy.

Clearly by continuity of Ψ at x0 the first term on the right side of
(9.26) converges to zero for any B > 0 as γ ↘ 0, and the second term
converges to zero as B →∞. Thus we have proved (9.25). �



 
 



 
 

CHAPTER 10

Exponential Inequalities

We begin this chapter with a statement of the classic Bennett ex-
ponential inequality.

Bennett (1962) inequality Let X1, ..., Xn be independent random
variables with mean 0 and variance 0 < σ2 < ∞ such that for some
M > 0, |Xi| < M, i = 1, ..., n. Then for all z > 0

(10.1) P
{
X1 + · · ·+Xn > z

√
n
}
≤ exp

(
− z2

2σ2 + 2
3
Mn−1/2z

)
.

A nice proof of this inequality is given in Appendix B of Pollard (1984).

A generalized maximal Bernstein-type inequality

Let X1, X2, . . . be a sequence of random variables, and for any
choice of 1 ≤ k ≤ l <∞ we denote the partial sum S(k, l) =

∑l
i=kXi,

and define M(k, l) = max{|S(k, k)|, . . . , |S(k, l)|}. It turns out that
under a variety of assumptions the partial sums S(k, l) will satisfy a
generalized Bernstein-type inequality of the following form: for suitable
constants A > 0, a > 0, b ≥ 0 and 0 < γ < 2 for all m ≥ 0, n ≥ 1 and
t ≥ 0,

(10.2) P{|S(m+ 1,m+ n)| > t} ≤ A exp

{
− at2

n+ btγ

}
.

In particular, if X1, X2, . . . are independent random variables with
mean 0 and variance 0 < σ2 <∞ such that for some M > 0, |Xi| < M,
i = 1, ..., n, then from Bennett’s inequality we get for all m ≥ 0, n ≥ 1
and t ≥ 0,

P {|S(m+ 1,m+ n)| > t} ≤ 2 exp

(
− t2

2nσ2 + 2
3
Mt

)
.

So (10.2) holds with A = 2, a = 1/ (2σ2), b = M/ (3σ2) and γ = 1.
Kevei and Mason (2011, 2013) obtained the following maximal inequal-
ity for sums which satisfy a more general tail bound than (10.2).

Theorem (Kevei and Mason (2011, 2013) Assume that there exist
constants A > 0 and a > 0 and a sequence of non-decreasing non-
negative functions {gn}n≥1 on (0,∞), such that for all t > 0 and n ≥ 1,

61



 
 

62 10. EXPONENTIAL INEQUALITIES

gn (t) ≤ gn+1 (t) and for all 0 < ρ < 1

(10.3) lim
n→∞

inf

{
t2

gn(t) log t
: gn (t) > ρn

}
=∞,

where the infimum of the empty set is defined to be infinity, such that
for all m ≥ 0, n ≥ 1 and t ≥ 0,

(10.4) P{|S(m+ 1,m+ n)| > t} ≤ A exp

{
− at2

n+ gn(t)

}
.

Then for every 0 < c < a there exists a C > 0 depending only on A, a
and {gn}n≥1 such that for all n ≥ 1, m ≥ 0 and t ≥ 0,

(10.5) P{M(m+ 1,m+ n) > t} ≤ C exp

{
− ct2

n+ gn(t)

}
.

A special case is the following: Assume that for suitable constants
A > 0, a > 0, b ≥ 0 and 0 < γ < 2 for all m ≥ 0, n ≥ 1 and
t ≥ 0, (10.2) holds, then it is readily checked that (10.3) holds with
gn(t) = btγ.

Remark Kevei and Mason (2011, 2013) provide numerous examples
of sequences of random variables X1, X2, . . . , that satisfy a Bernstein-
type inequality of the form (10.4). Note that we do not require the
random variables to be independent.

Remark Kevei and Mason (2011, 2013) point out that inequality (10.5)
remains valid for sums of Banach space valued random variables with
absolute value |·| replaced by norm || · ||.

Here is an empirical process version of the Fuk-Nagaev (1971) in-
equality. See Theorem 7.1 of Einmahl and Li (2008).

Fuk–Nagaev type inequality Let G be a pointwise measurable class
of measurable functions g : X → R with envelope function G. Let Z,
Zi, i ≥ 1 be i.i.d. X−valued random variables in a general measure
space (X ,A) and assume that for some p > 2, EG(Z)p <∞. Then we
have for all 0 < η ≤ 1, δ > 0 and any t > 0

P

{
max

1≤m≤n

∥∥√mαm (g)
∥∥
G ≥ (1 + η) t+ βn

}

≤ exp

(
− t2

(2 + η)σ2

)
+
nCEGp(Z)

tp
,

where EG(Z)2 ≤ σ2, βn = E‖
√
nαn (g) ‖G and C > 0 is a constant

depending on η, δ and p.
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This inequality plays an important role in the work of Einmahl
and Mason (2000) and Dony and Einmahl (2009) on the consistency of
kernel regression estimators.

The next result follows from Theorem 3.3.1 in Yurinskĭı (1995), also
see Inequality 2 of Einmahl (1989), which is in turn a reformulation of
a result due to Yurinskĭı (1976).

[Yurinskĭı, 1995 ] Let G be a pointwise measurable class of func-
tions g : X → R with envelope function G. Let Z, Zi, i ≥ 1, be i.i.d.
X−valued random variables in a general measure space (X ,A). As-
sume that for some H > 0,

EG(Z)m ≤ m!σ2Hm−2

2
, m ≥ 2,

where EG(Z)2 ≤ σ2. Then for βn = E‖
√
nαn (g) ‖G, it holds for any

t > 0,

P

{
max

1≤m≤n

∥∥√mαm (g)
∥∥
G ≥ t+ βn

}
≤ exp

(
− t2

4nσ2

)
∨ exp

(
− t

4H

)
.

This inequality is crucial in the Dony and Einmahl (2009) treatment of
the uniform in bandwidth consistency of kernel regression estimators
at a fixed point. See their Fact 4.2.

McDiarmid’s inequality Let Y1, . . . , Yn be independent random vari-
ables taking values in a set A and assume that a function H : An → R,
satisfies for each i = 1, . . . , n and some ci, uniformly in y1, . . . , yn, y,∈
A

|H(y1, . . . , yi−1, yi, yi+1, . . . , yn)−H(y1, . . . , yi−1, y, yi+1, . . . , yn)| ≤ ci,

then for every t > 0,

P {H(Y1, . . . , Yn)− EH(Y1, . . . , Yn) ≥ t} ≤ exp

(
−2t2/

n∑
i=1

c2i

)
and

P {−H(Y1, . . . , Yn) + EH(Y1, . . . , Yn) ≥ t} ≤ exp

(
−2t2/

n∑
i=1

c2i

)
.

Proof The following proof is largely taken from Devroye (1991) and
Devroye and Lugosi (2001).

Lemma (Hoeffding) Let X be a random variable such that EX = 0
and a ≤ X ≤ b. Then for all s > 0

E exp (sX) ≤ exp
(
s2 (b− a)2 /8

)
.
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Proof Notice that for any a ≤ x ≤ b and s > 0,

exp (sx) = exp

((
x− a
b− a

)
sb+

(
b− x
b− a

)
sa

)
,

which by Jensen’s inequality is

≤
(
x− a
b− a

)
exp (sb) +

(
b− x
b− a

)
exp (sa) .

Thus by setting p = −a/(b− a)

E exp (sX) ≤ b

b− a
exp (sa)− a

b− a
exp (sb)

= (1− p+ p exp (s (b− a))) exp (−ps (b− a)) =: exp (φ (u)) ,

where u = s (b− a) and φ (u) = −pu+ log (1− p+ peu). Notice that

φ′ (u) = −p+
pe−u

p+ (1− p) e−u
and φ′′ (u) =

p (1− p) e−u

(p+ (1− p) e−u)2
.

Now(
p+ (1− p) e−u

)2
= p2+2p (1− p) e−u+(1− p)2 e−2u ≥ 4p (1− p) e−u,

thus |φ′′ (u)| ≤ 1/4. Next since φ (0) = φ′ (0) = 0, we get by a Taylor
expansion that φ (u) ≤ u2/8. �

This immediately yields the following lemma.

Lemma DL (Devroye and Lugosi)

Let U and V be random variables such that, w.p. 1, E (V |U) = 0 and
for some constant c ≥ 0 and function h,

h (U) ≤ V ≤ h (U) + c.

Then for all s > 0

E (exp (sV ) |U) ≤ exp
(
s2c2/8

)
.

Let
V = H(Y1, . . . , Yn)− EH(Y1, . . . , Yn)

and for i = 2, . . . , n

Vi = E (V |Y1, . . . , Yi)− E (V |Y1, . . . , Yi−1)
= E (H(Y1, . . . , Yn)|Y1, . . . , Yi)− E (H(Y1, . . . , Yn)|Y1, . . . , Yi−1)

and set
V1 = E (V |Y1)− E (V ) = E (V |Y1) .

Clearly
n∑
i=1

Vi = V = H(Y1, . . . , Yn)− EH(Y1, . . . , Yn).
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Notice that

Zi ≤ Vi = E (V |Y1, . . . , Yi)−
∫
E (V |Y1, . . . , Yi−1, yi)Pi (dyi)

=

∫
{E (V |Y1, . . . , Yi)− E (V |Y1, . . . , Yi−1, yi)}Pi (dyi) ≤ Wi

where

Wi = sup
y′i,yi

∫
{E (V |Y1, . . . , Yi−1, y′i)− E (V |Y1, . . . , Yi−1, yi)}Pi (dyi)

and

Zi = inf
y′i,yi

∫
{E (V |Y1, . . . , Yi−1, y′i)− E (V |Y1, . . . , Yi−1, yi)}Pi (dyi) .

Obviously Zi ≤ Vi ≤ Wi. Also by the bounded difference assumption

Wi − Zi ≤ sup
y′i, y

′′
i

[
E (V |Y1, . . . , Yi−1, y′i)− E

(
V |Y1, . . . , Yi−1, y

′′

i

)]
≤ ci

Thus

Zi ≤ Vi ≤ Zi + ci

and hence by applying Lemma DL with U = (Y1, . . . , Yi−1), V = Vi
and h (U) = Zi, we get

E (exp (sVi) |Y1, . . . , Yi−1) ≤ exp
(
s2c2i /8

)
.

We get

P {H(Y1, . . . , Yn)− EH(Y1, . . . , Yn) ≥ t}

= P

{
n∑
i=1

Vi ≥ t

}
≤ E exp

(
s

n∑
i=1

Vi

)
e−st

= E

[
E (exp (sVn) |Y1, . . . , Yn−1) exp

(
s
n−1∑
i=1

Vi

)]
e−st

≤ exp
(
s2c2n/8

)
E exp

(
s

n−1∑
i=1

Vi

)
e−st ≤ exp

(
s2

n∑
i=1

c2i /8

)
e−st,

which by choosing s = 4t/
∑n

i=1 c
2
i gives

P {H(Y1, . . . , Yn)− EH(Y1, . . . , Yn) ≥ t} ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

�

Example 1: application of McDiarmid’s inequality to density
estimation
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Let X,X1, . . . , Xn, n ≥ 1, be i.i.d. real valued random variables
with density f . The classic estimator of f based on X1, . . . , Xn, is the
kernel estimator

(10.6) fn,h (x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R,

where K is a measurable function satisfying
∫
RK (u) du = 1, called a

kernel, and h > 0 is a bandwidth. For later use, write

||K||1 =

∫
R
|K| (y) dy.

Typically h = hn goes to zero at a certain rate as n→∞. By setting

H(x1, . . . , xn) =

∫
R

∣∣∣∣∣ 1

nh

n∑
i=1

K

(
x− xi
h

)
− Efn,h (x)

∣∣∣∣∣ dx,
it is easy to check that we can apply McDiarmid’s inequality with

ci =
2

nh

∫
R
|K|

(
x− u
h

)
du =

2||K||1
n

to give for all t ≥ 0

P

{∫
R
|fn,h (x)− Efn,h (x)| dx− E

(∫
R
|fn,h (x)− Efn,h (x)| dx

)
≥ t

}
(10.7) ≤ exp

(
−nt2/

(
2||K||21

))
and

P

{
E

(∫
R
|fn,h (x)− Efn,h (x)| dx

)
−
∫
R
|fn,h (x)− Efn,h (x)| dx ≥ t

}
(10.8) ≤ exp

(
−nt2/

(
2||K||21

))
.

Example 1b: here is a partial refinement of Example 1

Let fn,h be as in (10.6), where K is a kernel, as above, and satisfying

(10.9) K(u) = 0, for |x| > 1/2.

Let 0 < ε < 2ε < 1/2, and choose any Borel set A such that ε = P {A} .
Let Ah denote the closed set of all y ∈ R at most distance h/2 from A,
that is

Ah = {y : inf{|y − x| : x ∈ A} ≤ h/2} .
Assume h is small enough so that P (Ah) = εn satisfies

(10.10) ε < εn < 2ε < 1/2.
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We are interested in finding an exponential bound for

Dn :=
√
n

∫
A

{|fn,h(x)− Efn,h(x)| − E|fn,h(x)− Efn,h(x)|} dx.

Proposition R Under the above assumptions, for all t > 0

P
{
|Dn| >

√
ε
[√

2||K||1 + 2||K||1t
]}

(10.11) ≤ 4 exp

(
−t

2

8

)
+ 2 exp

(
−
√
nεt

2

)
.

Proof Note that by (10.9),

√
n

∫
A

|fn,h(x)− Efn,h(x)|dx

=
√
n

∫
A

∣∣∣∣∣ 1

nh

n∑
i=1

K

(
Xi − x
h

)
1 {Xi ∈ Ah} − Efn,h(x)

∣∣∣∣∣ dx.
Set

N =
n∑
i=1

1 {Xi ∈ Ah} .

Observe that as a process in x, we have

n∑
i=1

K

(
Xi − x
h

)
1 {Xi ∈ Ah} =d

N∑
i=1

K

(
Yi − x
h

)
,

where Y1, ..., Yn are i.i.d. with common density function

fY (y) =

{
f(y)
εn
, for y ∈ Ah

0, elsewhere

and independent of N. Thus

√
n

∫
A

|fn,h(x)− Efn,h(x)|dx

=d

√
n

∫
A

∣∣∣∣∣ 1

nh

N∑
i=1

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣ dx.
(As usual the empty sum is defined to be zero.) Note that for any value
of y ∈ Ah

1

h

∫
A

∣∣∣∣K (y − xh
)∣∣∣∣ dx ≤ ||K||1.
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Thus

δn(1) :=
√
n

∣∣∣∣∣
∫
A

{∣∣∣∣∣ 1

nh

N∑
i=1

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣
−

∣∣∣∣∣ 1

nh

∑
1≤i≤nεn

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣
}

dx

∣∣∣∣∣
≤ |N − nεn|√

n
||K||1

and

δn(2) :=
√
n

∣∣∣∣∣
∫
A

{
E

∣∣∣∣∣ 1

nh

N∑
i=1

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣
−E

∣∣∣∣∣ 1

nh

∑
1≤i≤nεn

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣
}

dx

∣∣∣∣∣ .
≤ E |N − nεn|√

n
||K||1 ≤

√
2ε||K||1.

Applying Bennett’s inequality (10.1) we get that for z > 0,

P

{∣∣∣∣N − εnn√
n

∣∣∣∣ > z

}
≤ 2 exp

(
− z2

2εn(1− εn) + 2
3
(1− εn)n−1/2z

)
,

which by (10.10) is

(10.12) ≤ 2 exp

(
− z2

4ε+ n−1/2z

)
≤ 2 exp

(
−z

2

8ε

)
+ 2 exp

(
−
√
nz

2

)
.

Consider the random variable

∆n =
√
n

∫
A

∣∣∣∣∣ 1

nh

∑
1≤i≤nεn

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣ dx
−
√
n

∫
A

E

∣∣∣∣∣ 1

nh

∑
1≤i≤nεn

K

(
Yi − x
h

)
− Efn,h(x)

∣∣∣∣∣ dx.
Now by using McDiarmid’s inequality, analogously as in (10.7) and
(10.8), we get for all u > 0,

P {|∆n| > u} ≤ 2 exp

(
−u2

2εn||K||21

)
,
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which by (10.10) is

(10.13) ≤ 2 exp

(
−u2

4ε||K||21

)
.

Now

|Dn| ≤ |∆n|+ δn(1) + δn(2) ≤ |∆n|+
|N − nεn|√

n
||K||1 +

√
2ε||K||1.

Thus by inequalities (10.12) and (10.13), we get that for all t > 0

P
{
|Dn| >

√
ε
[√

2||K||1 + 2||K||1t
]}

≤ 2 exp

(
−t2

4

)
+ 2 exp

(
−t

2

8

)
+ 2 exp

(
−
√
nεt

2

)
≤ 4 exp

(
−t

2

8

)
+ 2 exp

(
−
√
nεt

2

)
.

�

Example 2: application of McDiarmid’s inequality to estima-
tors of integral functionals of the density and its derivatives

Mason et al. (2010) examined the following estimation problem:
Let X be a random variable with cumulative distribution function F
having density f. Consider a general class of integral functionals of the
form

(10.14) T (f) =

∫
R

Φ
(
f (0)(x), f (1)(x), . . . , f (k)(x)

)
dx,

with k ≥ 0, where f (0) = f and f (j) denotes the jth derivative of f ,
for j = 1, . . . , k, if k ≥ 1, and Φ is a smooth function defined on
Rk+1.They studied plug-in estimators of T (f), which are obtained by
replacing f (j), for j = 0, . . . , k, by kernel estimators based on a random
sample of X1, , . . . , Xn, n ≥ 1, i.i.d. X, defined as follows. Let K (·)
be a kernel defined on R with suitable properties. For h > 0 and each
x ∈ R define the function on R

Kh(x− ·) = h−1K ((x− ·) /h) .

The kernel estimator of f based on X1, , . . . , Xn, n ≥ 1, and a sequence
of positive constants h = hn converging to zero, is

f̂hn(x) =
1

n

n∑
i=1

Khn(x−Xi), for x ∈ R,
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and the kernel estimator of f (j), for j = 1, . . . , k, is

f̂
(j)
hn

(x) =
1

n

n∑
i=1

K
(j)
hn

(x−Xi), for x ∈ R,

where K
(j)
hn

is the jth derivative of Khn . Note that K
(j)
hn

= h−j−1n K(j),

where K(j) is the jth derivative of K. The plug-in estimator of T (f)
is

(10.15) T (f̂h) =

∫
R

Φ
(
f̂h(x), f̂

(1)
h (x), . . . , f̂

(k)
h (x)

)
dx.

They showed how a simple argument based on McDiarmid’s inequality

yields a useful representation for T (f̂h). This means that it can be
written as a sum of i.i.d. random variables plus a remainder term
that converges to zero at a good stochastic rate. This permits them to
establish, under regularity conditions, a nice strong consistency result

and central limit theorem for T (f̂h), as long as h = hn converges to
zero at a suitable rate as the sample size n converges to infinity. Their
paper demonstrates the power of McDiarmid’s inequality to provide
useful probability bounds for complex random functions.

Example 3: application of McDiarmid’s inequality to the em-
pirical process

Let F be a pointwise measurable class of measurable real-valued
functions defined on a measurable space (S,S) and assume that every
f ∈ F is bounded by M. Let X,X1, . . . , Xn, n ≥ 1, be i.i.d. defined
on a probability space (Ω,A, P ) and taking values in S. Consider the
function defined on S × ...× S (n times) for (x1, . . . , xn) ∈ S × ...× S
by

H(x1, . . . , xn) = sup
f∈F

∣∣∣∣∣ 1√
n

n∑
k=1

(f (xk)− Pf (X))

∣∣∣∣∣ .
Notice that

H(X1, . . . , Xn) = ‖αn‖F .

Clearly H satisfies the assumptions of McDiarmid’s inequality with
ci = 2M/

√
n for i = 1, . . . , n, which gives

(10.16) P {‖αn‖F ≥ t+ E ‖αn‖F} ≤ exp

(
− t2

2M2

)
.

Compare (10.16) with the following inequality, which is essentially due
to Talagrand (1994) (see also Ledoux (1996), Theorem 2.14.25 of van
der Vaart and Wellner (1996) and the exposition in Chapter 3 of Giné
and Nickl (2015)).
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Talagrand’s Inequality Let G be a pointwise measurable class of mea-
surable real-valued functions defined on a measurable space (S,S). Let
X,Xn, n ≥ 1, be a sequence of i.i.d. random variables defined on a
probability space (Ω,A, P ) and taking values in S, satisfying for some
0 < M <∞

||g||∞ ≤M, g ∈ G,
then for all t > 0 we have for suitable finite constants A,A1 > 0,

P

{
max

1≤m≤n
||
√
mαm||G ≥ A(E||

n∑
i=1

εig(Xi)||G + t)

}

(10.17) ≤ 2(exp(−A1t
2/nσ2

G) + exp(−A1t/M)),

where σ2
G = supg∈G V ar(g(X)) and {εi}i≥1 is a sequence of Rademacher

variables independent of the X ′is.

Remark The Talagrand inequality (10.17) is essential in the proofs of
the uniform consistency results in Chapter 11 and the strong approxi-
mations in Chapter 12.

The original form of this inequality given in Theorem 3.5 of Talagrand
(1994) was stated with

max
1≤m≤n

||
√
mαm||G

replaced by ||
√
nαn||G. It was pointed out in Einmahl and Mason

(2000) that the maximal version given here follows easily by combining
Theorem 2.14.25 of van der Vaart and Wellner (1996), which is a version
of Theorem 3.5 of Talagrand (1994), with the Ottaviani inequality (see,
for instance, Proposition A.1.1 of van der Vaart and Wellner [VW]
(1996 ). We shall now show how this goes. First we begin with a
statement of the VW (1996) version of the Ottaviani inequality.

The Ottaviani inequality Let X1, . . . , Xn be independent stochastic
processes indexed by a arbitrary set G. For each 1 ≤ m ≤ n, let
Sm = X1 + · · ·+Xm and set S0 = 0. Then for all λ > 0 and µ > 0
(10.18)

P ∗
(

max
1≤m≤n

||Sm||G > λ+ µ

)
≤ P ∗ (||Sn||G > λ)

1− P ∗ (max1≤m≤n ||Sn − Sm||G > µ)
.

Next under the same assumptions as above, Theorem 2.14.25 of VW
(1996) says that for suitable constants A′, A1 > 0, (we shall assume that
A′ ≥ 8),

P

{
||
√
nαn||G ≥ A′(E||

n∑
i=1

(g(Xi)− Eg(X)) ||G + t)

}
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(10.19) ≤ exp(−A1t
2/nσ2

G) + exp(−A1t/M).

Set

µεn := E||
n∑
i=1

εig(Xi)||G.

Since

(10.20) E||
n∑
i=1

(g(Xi)− Eg(X)) ||G ≤ 2µεn,

we get by (10.19)

P
{
||
√
nαn||G ≥ 2A′µεn + A′t

}
(10.21) ≤ exp(−A1t

2/nσ2
G) + exp(−A1t/M).

Notice that since A′ ≥ 8, we obtain by Markov’s inequality and apply-
ing (10.20) that

pn :=

max
0≤k≤n

P

(
||

n∑
i=1

(g(Xi)− Eg(X))−
k∑
i=1

(g(Xi)− Eg(X)) ||G > A′µεn

)

≤ 2E||
∑n

i=1 (g(Xi)− Eg(X)) ||G
A′µεn

≤ 4

A′
≤ 1

2
.

Thus by applying the Ottavani inequality (10.18) with λ = 2A′µεn+2At
and µ = A′µεn, we have

P

{
max

1≤m≤n
||
√
mαm||G ≥ 3A′(µεn + t)

}
≤ P

{
||
√
nαn||G ≥ 2A′µεn + 2At

}
/ (1− pn)

≤ 2P
{
||
√
nαn||G ≥ 2A′µεn + A′t

}
,

which by (10.21) is

≤ 2
(
exp(−A1t

2/nσ2
G) + exp(−A1t/M)

)
.

Thus we get (10.17) from (10.19) with A = 3A′.

A rougher form of the maximal version of Talagrand’s inequality can
be derived from the following maximal inequality due to Montgomery–
Smith (1993) (see also Theorem 1.1.5 in de la Peña and Giné (1999)).

A maximal inequality Let X1, . . . , Xn, n ≥ 1, be i.i.d. random
variables taking values in a separable Banach space. Then for all t > 0,

(10.22) P

{
max

1≤m≤n

∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥ > t

}
≤ 9P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

30

}
.



 
 

CHAPTER 11

Uniform in Bandwidth Consistency

We present in this chapter a general method based on empirical
process techniques to prove uniform in bandwidth consistency of kernel-
type function estimators. It is a distillation of some recent results
by Einmahl and Mason (2005) and Dony et al. (2006), whose work
was motivated by original groundwork by Nolan and Marron (1989).
Our main theoretical result, the theorem below, may be viewed as a
notational reformulation and generalization of Theorem 2 of Dony et
al. (2006). Here we shall focus on the special case of the kernel density
estimator.

Mason and Swanepoel (2011) introduced the following general setup
for studying kernel-type estimators. Let X,X1, X2, . . . be i.i.d. random
variables on a probability space (Ω,A, P ) with values in a measurable
space (S,S). (Typically S will be a Fréchet space.) Let G denote a
class of measurable real valued functions g of (x, h) ∈ S × (0, 1], i.e.

(G) g : (x, h) 7→ g(x, h).

From this class we form the class of measurable real valued functions
G0 of x ∈ S defined as

(G0) G0 = {x 7→ g(x, h) : g ∈ G, 0 < h ≤ 1} .

Notice that Theorem 7.5 of Rudin (1966) implies that the functions
x 7→ g(x, h) are indeed measurable functions from (S,S) to (R,B),
where B denotes the Borel subsets of R. It will be necessary in our
presentation to distinguish between G and G0. Always keep in mind
that functions g ∈ G are defined on S× (0, 1] and functions g0 ∈ G0 are
defined on S.

11.0.6. The underlying assumptions and basic definitions.
Let X be a random variable from a probability space (Ω,A, P ) to a
measurable space (S,S). In the sequel, || · ||∞ denotes the supremum
norm on the space of bounded real valued measurable functions on S.
To formulate our basic theoretical results we shall need the following
class of functions. Let G denote the class of measurable real valued
functions g of (u, h) ∈ S × (0, 1] introduced in our general setup and

73
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recall the class of functions G0 on S. We shall assume the following
conditions on G and G0:

(G.i) supg∈G sup0<h≤1 ‖g(·, h)‖∞ =: η <∞,

(G.ii) supg∈G Eg
2(X, h) ≤ Dh, for some D > 0 and all 0 < h ≤ 1,

(G.iii) G0 is a pointwise measurable class,

(G.iv) N (ε,G0) ≤ Cε−ν , 0 < ε < 1, for some C ≥ 1 and ν ≥ 1.

Note that (G.iii) is a measurability condition that we assume in
order to avoid using outer probability measures in all of our statements.
A pointwise measurable class G0 has a countable subclass Gc such that
we can find for any function g ∈ G0 a sequence of functions {gm,m ≥ 1}
in Gc for which limm→∞ gm(x) = g(x) for all x ∈ S. See Example 2.3.4
in van der Vaart and Wellner (1996). (Recall that pointwise measurable
was already defined in Chapter 5.)

Condition (G.iv) says that G0 is of VC-type, as defined in Chapter
8. We shall recall here the meaning of VC-type. As usual, we define
the covering numbers

(11.1) N (ε,G0) = sup
Q
N
(
ε
√
Q(G2),G0, dQ

)
,

where G is an envelope function for G0, and where the supremum is
taken over all probability measures Q on (S,S) with Q(G2) <∞. We
shall now define the notation in (11.1). By an envelope function G for
G0 we mean a measurable function G : S → [0,∞], such that

G(u) ≥ sup
g0∈G0

|g0(u)|, u ∈ S.

Note that by the definition of the class G0,
sup
g0∈G0

|g0(u)| = sup {|g(u, h)| : g ∈ G, 0 < h ≤ 1} .

The dQ in (11.1) is the L2(Q)–metric and for any ε > 0, N (ε,G0, dQ) is
the minimal number of dQ–balls with radius ε which is needed to cover
the entire function class G0.

We use η as our (constant) envelope function, when condition (G.i)
holds. (In this case EG2(X) <∞ is trivially satisfied.)

11.0.7. A uniform in bandwidth result. For any n ≥ 1, g ∈ G
and 0 < h < 1 define,

gn,h := n−1
n∑
i=1

g (Xi, h) .

We shall prove the following special case of the general theorem in
Mason and Swanepoel (2011).
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Theorem 11.1. Suppose that G is a class of functions that satisfies
all of the conditions in (G.i)–(G.iv). Then we have for any choice of
c > 0 and 0 < h0 < 1 that, with probability 1,

(11.2) lim sup
n→∞

sup
c logn
n
≤h≤h0

sup
g∈G

√
n|gn,h − Egn,h|√

h (| log h| ∨ log log n)
=: A (c) <∞,

where A(c) is a finite constant depending on c and the constants in
(G.i), (G.ii) and (G.iv).

Kernel density estimator special case

The results in Einmahl and Mason (2005) on the uniform in band-
width consistency of kernel density and regression function (bounded
case) estimators can be readily derived from our theorem. Let G denote
the class of measurable real valued functions g of (u, h) ∈ Rd× (0, 1] of
the form

(11.3) g (u, h) = K((x− u)/h1/d), x ∈ Rd,

where K(·) is a bounded measurable real valued function on Rd, which
satisfies

(11.4)

∫
Rd
K (x) dx = 1 and

∫
Rd
|K (x)| dx =: ‖K‖1 <∞.

In addition, assume that the underlying distribution function F (·) has
a bounded density. Under these assumptions, it is readily verified that
(G.ii) is satisfied. ((G.i) holds trivially.) For convenience of presenta-
tion we shall assume that K is of the form

K (x) = K (x1, . . . , xd) = Πd
j=1Kj (xj) , x ∈ Rd,

where K1,. . . , Kp are right continuous functions and of bounded vari-
ation on R. This implies by the discussion in Chapter 5 that lead to
(5.2), that the class of functions

K ={
(x1, . . . , xd) 7−→ Πd

j=1Kj (γxj + ρj) : γ > 0, ρj ∈ R, 1 ≤ j ≤ d
}
,

is pointwise measurable. The bounded variation assumption implies
by the results in Section 5 of Nolan and Pollard (1987) that for each
1 ≤ j ≤ d the class of functions defined on R,{

Kj

(
x− ·
h1/d

)
: 0 < h ≤ 1, x ∈ R

}
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is of VC-type, which by an application of Lemma A.1 of Einmahl and
Mason [EM] (2000) (see (8.3) in Chapter 8) implies that K is of VC-
type. From this we infer that the class of functions defined on Rd

G0 =

{
u ∈ Rd 7→ Πd

j=1Kj

(
xj − uj
h1/d

)
: x ∈ Rd, 0 < h ≤ 1

}
is also of VC-type. Thus (G.iv) holds. Consider the kernel density
estimator

(11.5) fn,h (x) =
1

nh

n∑
i=1

K((x−Xi)/h
1/d) =

1

nh

n∑
i=1

g(Xi, h),

where g ∈ G0 is as defined in (11.3). A special case of our Theorem
11.1 gives the following uniform in bandwidth consistency result for
fn,h (x) .

Proposition [EM] (Theorem 1 of EM (2005)) Let K be a kernel
defined on Rd that satisfies the above conditions and assume that the
underlying distribution function F (·) has a bounded density. Then for
any c > 0 and 0 < h0 < 1, w.p. 1, for some constant 0 < A (c) <∞,

(11.6) lim sup
n→∞

sup
c logn
n
≤h≤h0

sup
x∈Rd

√
nh |fn,h (x)− Efn,h (x)|√
| log h| ∨ log log n

= A (c) .

Remark With applications to variable bandwidth estimators in mind,
we further note that Proposition [EM] implies for any sequences 0 <
an < bn ≤ 1, satisfying bn → 0 and nan/ log n→∞, w.p. 1,

sup
an≤h≤bn

sup
x∈Rd
|fn,h (x)− Efn,h (x)|

= O

√ log(1/an) ∨ log log n

nan

 ,(11.7)

which in turn implies

(11.8) lim
n→∞

sup
an≤h≤bn

sup
x∈Rd
|fn,h (x)− Efn,h (x)| = 0, a.s.

Let us now look at the bias term. As soon as one knows that

(11.9) sup
an≤h≤bn

sup
x∈Rd
|Efn,h (x)− f (x)| → 0,

we have under the conditions of Proposition [EM],

(11.10) sup
an≤h≤bn

sup
x∈Rd
|fn,h (x)− f (x)| → 0, a.s.
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Notice that since

|Efn,γ (x)− f (x)| =
∣∣∣∣E [γ−1K (x−Xγ1/d

)]
− f (x)

∣∣∣∣ ,
to verify (11.9) it suffices to show that

(11.11) lim
γ↘0

sup
x∈Rd

∣∣∣∣E [γ−1K (x−Xγ1/d

)]
− f (x)

∣∣∣∣ = 0.

Lemma Whenever K satisfies (11.4) and f is uniformly continuous
on Rd, (11.11) holds.

Proof Note the assumption that f is uniformly continuous on Rd

is equivalent to f being continuous on Rd and satisfying the condition
that

lim
r→∞

sup {f(z) : |z| ≥ r} = 0,

which of course implies that f bounded by a finite constant 0 < M <
∞. We see that

sup
x∈Rd

∣∣∣∣E [γ−1K (x−Xγ1/d

)]
− f (x)

∣∣∣∣
= sup

x∈Rd

∣∣∣∣∫
Rd
γ−1K

(
x− y
γ1/d

)
f (y) dy − f (x)

∣∣∣∣ .
This last expression is, in turn, by the change of variables u = x−y

γ1/d
and

(11.4)

= sup
x∈Rd

∣∣∣∣∫
Rd

(
f
(
x− γ1/du

)
− f (x)

)
K (u) du

∣∣∣∣ ,
which for any B > 0 is

≤ sup
x∈Rd

∣∣∣∣∫
|u|≤B

(
f
(
x− γ1/du

)
− f (x)

)
K (u) du

∣∣∣∣
+ sup

x∈Rd

∣∣∣∣∫
|u|>B

(
f
(
x− γ1/du

)
− f (x)

)
K (u) du

∣∣∣∣
≤ sup
|x−y|≤γ1/dB

|f (y)− f (x)| ‖K‖1 + 2M

∫
|u|>B

|K| (u) du

=: ∆1 (γ,B) + ∆2 (B) .

Clearly by uniform continuity of f for each B > 0

lim sup
γ↘0

∆1 (γ,B) = 0.

Also
lim
B→∞

∆2 (B) = 0.
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Thus we conclude that (11.11) holds. �

Corollary [EM] (Corollary 1 of EM (2005)) Under the assump-
tions of Proposition [EM] for any sequences 0 < an < bn < 1, satisfying
bn → 0 and nan/ log n→∞, and any uniformly continuous density f,
we have,

(11.12) lim
n→∞

sup
an≤h≤bn

sup
x∈Rd
|fn,h (x)− f (x)| = 0, a.s.

Remark The Einmahl and Mason (2005) Corollary 1 is stated with an
unnecessary assumption (K.v).

Remark Suppose now that ĥn = ĥn(x) is a local data–driven band-
width sequence satisfying

(11.13) P
{
an ≤ ĥn (x) ≤ bn : x ∈ I

}
→ 1

or a constant data–driven bandwidth sequence ĥn satisfying with prob-
ability 1, for all large enough n ≥ 1,

(11.14) an ≤ ĥn ≤ bn.

For instance, if d = 1, one often has (11.14) for appropriate 0 < a <
b < ∞, an = an−1/5 and bn = bn−1/5. Eggermont and LaRiccia (2001)
is a good place to read about the various optimality criteria that lead
to the n−1/5. In this case and more generally under the assumptions of
Corollary [EM],

lim
n→∞

sup
x∈Rd

∣∣∣fn,ĥn (x)− f (x)
∣∣∣ = 0, a.s.

For a general treatment of bandwidth selection and data-driven band-
widths consult Sections 2.3 and 2.4 of Deheuvels and Mason (2004).

Kernel estimators of partial derivatives of a density

Let X be a random variable with density f on Rd and {Xi}i≥1 be

i.i.d. X with the same distribution as X. Let H be a kernel on Rd,
by which we mean here to be a measurable function H : Rd → R
satisfying,

(11.15)

∫
Rd
|vH| (v)dv <∞ and

∫
Rd
H(v)dv = 1.

Set for any h > 0, Hh(v) = h−1H(v/h1/d), and define

fn,h(x) =
1

n

n∑
i=1

Hh(x−Xi), x ∈ Rd.
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For any smooth enough function ϕ : Rd → R, integer ` ≥ 0 and
nonnegative integers i = (i1, . . . , id) such that i1 + · · ·+ id = `, denote
the mixed partial derivative operator

D`
(i)ϕ(t) =

∂`ϕ (t)

∂ti1 . . . ∂tid
, t ∈ Rd.

We shall impose the following assumptions:

1. Assume that D`
(i)H(t) exists for all t ∈ Rd.

We get then that for all x ∈ Rd

D`
(i)fn,h(x) =

1

nh1+`/d

n∑
k=1

D`
(i)H

(
x−Xk

h1/d

)
and

ED`
(i)fn,h(x) =

1

h1+`/d
ED`

(i)H

(
x−X
h1/d

)
=

1

h1+`/d

∫
Rd
D`

(i)H

(
x− u
h1/d

)
f (u) du.

For a given measurable subset C ⊂ Rd, let G be the class of measurable
functions Rd × (0, 1]→ R indexed by x ∈ C defined via

(11.16) G =

{
(u, h) ∈ Rd × (0, 1]→ D`

(i)H

(
x− u
h1/d

)
: x ∈ C

}
and G0 be the class of functions Rd → R indexed by (x, h) ∈ C × (0, 1]
defined via

(11.17) G0 =

{
u ∈ Rd → D`

(i)H

(
x− u
h1/d

)
: (x, h) ∈ C × (0, 1]

}
.

Note that each function g ∈ G0 is of the form

g (·, h) = D`
(i)H

(
x− ·
h1/d

)
.

2. Assume that the class of functions G0 given in (11.17) forms a class
of VC-type.

3. Further assume that

(11.18) sup
t∈Rd

∣∣D`
(i)H (t)

∣∣ =: D0 <∞ and

∫
Rd

∣∣D`
(i)H (v)

∣∣ dv <∞.
4. Assume enough smoothness conditions, so that we can get by
integrating by parts the identity

1

h1+`/d

∫
Rd
D`

(i)H

(
x− u
h1/d

)
f (u) du =

1

h

∫
Rd
H

(
x− u
h1/d

)
D`

(i)f (u) du.
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5. Next assume that for a constant M <∞,

(11.19) sup
t∈Rd
|f (t)| ≤M <∞

and for all y ∈ Rd,

(11.20) sup
x∈Rd

∣∣D`
(i)f (x+ y)−D`

(i)f (x)
∣∣ ≤M |y| .

We see by (11.18), (11.19) and (11.20) that∣∣∣∣1h
∫
Rd
H

(
x− u
h1/d

)
D`

(i)f (u) du−D`
(i)f (x)

∣∣∣∣
=

∣∣∣∣∫
Rd
H (v)

{
D`

(i)

(
f
(
x− vh1/d

)
− f (x)

)}
dv

∣∣∣∣
(11.21) ≤ h1/dM

∣∣∣∣∫
Rd
|vH| (v) dv

∣∣∣∣ =: D1h
1/d.

We also get for each x ∈ Rd

E

(
D`

(i)H

(
x−X
h1/d

))2

=

∫
Rd

(
D`

(i)H

(
x− u
h1/d

))2

f (u) du

= h

∫
Rd

(
D`

(i)H (v)
)2
f
(
x− vh1/d

)
dv

(11.22) ≤ hD0M

∫
Rd

∣∣D`
(i)H (v)

∣∣ dv =: Dh.

6. Finally we assume that the class G0 in (11.17) is pointwise measur-
able.

From (11.18), (11.22) and Assumption 2 we get that (G.i) and (G.ii)
and (G.iv) hold. Assumption 6 implies that (G.iii) is satisfied. There-
fore we can apply Theorem 11.1 to get that under the conditions de-
scribed in 1-6 above that for any choice of c > 0 and 0 < h0 < 1 that,
with probability 1,
(11.23)

lim sup
n→∞

sup
cn≤h≤h0

sup
x∈C

√
nhh`/d|D`

(i)fn,h(x)− ED`
(i)fn,h(x)|√

| log h| ∨ log log n
= A(c) <∞,

where cn= c logn
n

, A(c) is a constant depending on c and the assumptions
on H and f .



 
 

11. UNIFORM IN BANDWIDTH CONSISTENCY 81

Thus for any constant B(c) > A(c), uniformly in cn ≤ h ≤ h0, with
probability 1,

(11.24) sup
x∈C
|D`

(i)fn,h(x)− ED`
(i)fn,h(x)| ≤ B(c)

√
| log h| ∨ log log n√

nhh`/d

and, in addition, from (11.21), we have

(11.25) sup
x∈C

∣∣ED`
(i)fn,h(x)−D`

(i)f (x)
∣∣ ≤ D1h

1/d.

Hence we see that for any sequences an < bn converging to zero such
that

log n

na
2`/d+1
n

→ 0,

and noting that an/cn → ∞, we get from (11.24) and (11.25) that,
with probability 1,

sup
an≤h≤bn

sup
x∈C
|D`

(i)fn,h(x)−D`
(i)f (x) | → 0.

Aria-Castro et al. (2016) using the same method proved a version of
this result under somewhat different assumptions. Their result was
needed in their study of kernel estimators of the flow line of a density
f starting at a point x0 with f (x0) > 0 and ending at a point x∗. This
required the use of kernel estimators of partial derivatives of f .

An Illustrative Example

It can be shown that if H is the d−variate standard normal kernel

H (u) =
exp

(
− |u|2 /2

)
(2π)d/2

= Πd
i=1

exp (−u2i /2)

(2π)1/2
, u = (u1, . . . , ud) ∈ Rd,

then for any integer ` ≥ 0 and nonnegative integers i = (i1, . . . , id) such
that i1 + · · · + id = `, the class G as defined in (11.17) with C = Rd

is a class of VC-type, is pointwise measurable, (11.18) is satisfied and
(11.15) holds. Here are the essential details to verify the first two
claims.

Notice that

D`
(i)H(t) =

∂`H (t)

∂ti11 . . . ∂t
id
d

= Πd
k=1

(
∂ik exp (−t2k/2)

(2π)1/2 ∂tikk

)
.

Since it is readily checked that for each 1 ≤ k ≤ d,∫
R

∣∣∣∣∣∂ik exp (−t2k/2)

(2π)1/2 ∂tikk

∣∣∣∣∣ dtk <∞,



 
 

82 11. UNIFORM IN BANDWIDTH CONSISTENCY

we see that each 1 ≤ k ≤ d the function

∂ik exp (−t2k/2)

(2π)1/2 ∂tikk

is of bounded variation on R. Therefore by Lemma 22 in Nolan and
Pollard (1987) the class of functions defined on R indexed by R×(0, 1],
given by

Gk,0 :=

∂
ik exp

(
−
(
xk−·
h

)2
/2
)

(2π)1/2 ∂tikk
: xk ∈ R, 0 < h ≤ 1


is of VC-type. Next an application of Lemma A1 of Einmahl and Mason
(2000) shows that the class of functions

G∗0 := {g1 . . . gd : gk ∈ Gk,0, k = 1, . . . , d} ,
defined on Rd, where g1 . . . gd : Rd → R, via

(u1, . . . , ud) 7−→ g1 (u1) . . . gd (ud) ,

is of VC-type, which implies that the class of functions on Rd indexed
by Rd×(0, 1]

G0 :=

{
D`

(i)H

(
x− ·
h

)
: x ∈ Rd, 0 < h ≤ 1

}
is of VC-type.

The class G0 is readily shown to be pointwise measurable too,
namely, it is readily checked that the class of functions Gc :=D`

(i)H


(
dnx1e
n+1

, . . . , dnxde
n+1

)
− ·

dnh1/de / (n+ 1)

 : x ∈ Rd, 0 < h ≤ 1, n ≥ 1

 ,

where x = (x1, . . . , xd), has the property that for each function

g = D`
(i)H

(
x− ·
h1/d

)
∈ G0

defined via t ∈ Rd → D`
(i)H

(
x−t
h1/d

)
, the sequence of functions {gn}n≥1,

defined via

t→ D`
(i)H


(
dnx1e
n+1

, . . . , dnxde
n+1

)
− t

dnh1/de / (n+ 1)

 ∈ Gc
has the property that for all t ∈ Rd, gn (t) → g (t) , as n → ∞. This
says that the class G0 is pointwise measurable.



 
 

11.1. PROOFS 83

Note that more generally this example can be extended to kernels
of the form

H (u) = K (u1) . . . K (ud) ,

where K is a smooth enough kernel on R.

Remark For more about kernel estimators of the derivative of densi-
ties, as well as regression functions, refer to Section 2.2 of Deheuvels
and Mason (2004) and the references therein.

Further Applications These methods can be readily adapted to treat
uniform bandwidth consistency of wide variety of kernel function esti-
mators, such as the Nadaraya-Watson estimator (1.10), the kernel dis-
tribution and conditional distribution function estimators, local poly-
nomial regression function estimators, and the smoothed empirical pro-
cess, among others. For details see Einmahl and Mason (2000, 2005),
Dony et al. (2006) and Mason and Swanepoel (2011, Erratum (2015),
2015). For an extended version of Theorem 11.1, which permits un-
bounded G0 classes, consult Mason (2012). (Note that in the statement
of Theorem 4.1 of Mason (2012) it is understood that the A (c) also
depends on the class G. Also in the statement of condition (G.iii) of
this theorem, G should be corrected to be G0. Furthermore, in Remark
4.2 of Mason (2012) when it says that in this case (4.7) holds with
cγn ≤ h ≤ b0 replaced by cγn ≤ ρ (h) ≤ b0 it is meant that for some finite
positive constant A(c), w.p. 1,
(11.26)

lim sup
n→∞

sup
cγn≤ρ(h)≤b0

sup
g∈G

√
nρ(h)

∣∣∣ 1
nρ(h)

∑n
i=1 g(Xi, h)− Eg(X,h)

ρ(h)

∣∣∣√
| log ρ(h)| ∨ log log n

= A(c).

which in turn implies that statement (4.7) holds with cγn ≤ h ≤ b0 and
the class of functions g (x, h) on S × (0, 1] replaced by the functions
g (x, ρ−1 (h)).)

11.1. Proofs

11.1.1. Proof of Theorem 11.1. Let αn be the empirical process
based on the sample X1, . . . , Xn, i.e. if ϕ : S → R, we have

αn(ϕ) =
1√
n

n∑
i=1

(ϕ(Xi)− Eϕ(X)),

whenever Eϕ(X) is finite and meaningful. Notice that in this notation

gn,h − Egn,h =
1√
n
αn (g(·, h)) ,
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so we get that for any n ≥ 1 and 0 < h ≤ 1,

sup
g∈G

√
n |gn,h − Egn,h|√

h (| log h| ∨ log log n)
= sup

g∈G

|αn (g(·, h))|√
h (| log h| ∨ log log n)

.

We first note that by (G.ii)

(11.27) E
[
g2 (X, h)

]
≤ Dh.

Set for j ≥ 0 and c > 0,

hj,n =
(
2jc log n

)
/n

and

Gj,n = {g(·, h) : g ∈ G, hj,n ≤ h ≤ hj+1,n} .
Clearly by (11.27) for hj,n ≤ h ≤ hj+1,n,

(11.28) E
[
g2 (X, h)

]
≤ 2Dhj,n =: σ2

j,n.

(From this point on the proof follows closely the lines of that of Theo-
rem 2 of Dony et al. (2006).) We shall use Proposition A.1 of Einmahl
and Mason (2000), stated in Chapter 8, to bound

E‖
n∑
i=1

εiϕ(Xi)‖Gj,n .

(Recalling the notation (1.6), for a functional Ψ defined on a class of
functions F , ‖Ψ‖F denotes supϕ∈F |Ψ (ϕ)|.) To that end we note that
each Gj,n satisfies (A.1) of the proposition with G = β = η and (A.3)
with σ2 = σ2

j,n. Further, since Gj,n ⊂ G, we see by (G.iv) that each Gj,n
also fulfills (A.2). Finally to see that (A.4) holds, observe that by (G.i)

sup
g∈Gj,n

‖g‖∞ ≤ η,

which by keeping in mind that σ2
j,n = 2Dhj,n is for large enough n and

all j ≥ 0

≤ 1

2
√
ν + 1

√
nσ2

j,n/ log(η ∨ 1/σj,n).

Now by applying Proposition A.1 of Einmahl and Mason (2000), see
(8.5), we get for some D1 > 0 and D2 > 0 for all large enough n and
j ≥ 0,

(11.29) E‖
n∑
i=1

εiϕ(Xi)‖Gj,n ≤ D1

√
nhj,n |log (D2hj,n)|.

Let for large enough n

ln := max {j : hj,n ≤ 2h0} ,
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then a little calculation shows that

(11.30) ln ∼
log
(

nh0
c logn

)
log 2

.

For k ≥ 1, set nk = 2k, and let

cj,k :=
√
nkhj,nk (|logD2hj,nk | ∨ log log nk), j ≥ 0.

Recalling (11.28) and applying the Talagrand inequality with

M = η and σ2
G = σ2

Gj,nk
≤ 2Dhj,nk =: D0hj,nk ,

we get for any t > 0,

P

{
max

nk−1≤n≤nk
||
√
nαn||Gj,nk ≥ A(D1cj,k + t)

}
≤ 2

[
exp

(
−A1t

2/ (D0nkhj,nk)
)

+ exp(−A1t/η)
]
.

Set for any ρ > 1, j ≥ 0 and k ≥ 1,

pj,k(ρ) := IP

{
max

nk−1≤n≤nk
||
√
nαn||Gj,nk ≥ A (D1 + ρ) cj,k

}
.

As we have cj,k/
√
nkhj,nk ≥

√
log log nk, we readily obtain for j ≥ 0,

pj,k(ρ) ≤ 2 exp

(
− ρ2A1

D0

log log nk

)
+ 2 exp

(
−
√
cρA1

η

√
log nk log log nk

)
,

which for γ = A1

D0
∧
√
cA1

η
implies

pj,k(ρ) ≤ 4 exp (− ργ log log nk) .

Thus

Pk(ρ) :=

lnk−1∑
j=0

pj,k(ρ) ≤ 4lnk (log nk)
−ργ ,

which by (11.30), is for all large k and large enough ρ > 1

Pk(ρ) ≤ 8 (log nk)
1−ργ = 8

(
1

k log 2

)ργ−1
≤ k−2.

Notice that by definition of ln, for large k

2hlnk ,nk = hlnk+1,nk ≥ 2h0,
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which implies that we have for nk−1 ≤ n ≤ nk[
c log n

n
, h0

]
⊂
[
c log nk
nk

, hlnk ,nk

]
.

Thus for all large enough k and nk−1 ≤ n ≤ nk,

Ak(ρ) :={
max

nk−1≤n≤nk
sup
g∈G

sup
c logn
n
≤h≤h0

√
n|gn,h − Egn,h|√

h (| log h| ∨ log log n)
> 2A(D1 + ρ)

}

⊂
lnk−1⋃
j=0

{
max

nk−1≤n≤nk
||
√
nαn||Gj,nk ≥ A(D1 + ρ)cj,k

}
.

It follows now for large enough ρ that

P (Ak(ρ)) ≤ Pk(ρ) ≤ k−2,

which by the Borel-Cantelli lemma implies Theorem 11.1. �



 
 

CHAPTER 12

Gaussian Approximation and Strong
Approximation

The material in this chapter is taken with many corrections from
Berthet and Mason (2006). Let us begin by describing the Gaussian
approximation problem for the empirical process. For a fixed integer
n ≥ 1 let X,X1, . . . , Xn be independent and identically distributed
random variables defined on the same probability space (Ω, T , P ) and
taking values in a Polish space X with metric ρ. Let A denote the
Borel sets generated by ρ. Denote by E the expectation with respect
to P of real valued random variables defined on (Ω, T ) and write PX
for the probability measure induced on (X ,A) by X. Let M be the
set of all measurable real valued functions on (X ,A). In this paper
we consider the following two processes indexed by a sufficiently small
class F ⊂ M. First, define the P -empirical process indexed by F to
be

(12.1) αn(f) =
1√
n

n∑
i=1

{f(Xi)− Ef(X)} , f ∈ F .

Second, define the P -Brownian bridge G indexed by F to be the mean
zero Gaussian process with the same covariance function as αn,

〈f, h〉 = cov(G(f),G(h))

= E (f(X)h(X))− E (f(X))E(h(X)), f, g ∈ F .(12.2)

Under entropy conditions on F , the Gaussian process G has a version
which is almost surely continuous with respect to the semi-metric

(12.3) dP (f, h) =

√
E (f(X)− h(X))2, f, g ∈ F ,

that is, we include dP -continuity in the definition of G.

Our goal is to show how for each n ≥ 1 a version of X1, . . . , Xn and G
can be constructed on the same underlying probability space (Ω, T , P )
in such a way that

(12.4) ‖αn −G‖F = sup
f∈F
|αn(f)−G(f)|

87
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converges to zero in probability at a specified rate, under useful assump-
tions on F and P . This is what we call the Gaussian approximation
problem. We shall also describe how our Gaussian approximation re-
sults can be used to define on the same probability (Ω, T , P ) a sequence
X1, X2 . . . , i.i.d. X and a sequence G1,G2, . . . , i.i.d. G so that w.p. 1,
also at a specified rate,

(12.5) n−1/2 max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

→ 0.

This is what we call the strong approximation problem.

12.0.2. Basic assumptions. We shall assume that F satisfies
the following boundedness condition (F.i) and measurability condition
(F.ii).

(F.i) For some M ≥ 2, for all f ∈ F , ‖f‖X = supx∈X |f (x)| ≤M/2.

(F.ii) The class F is point-wise measurable.

Assumption (F.i) justifies the finiteness of all the integrals that follow
as well as the application of the key inequalities. The requirement (F.ii)
is imposed to avoid using outer probability measures in our statements.

We intend to compute probability bounds for (12.4) holding for any n
and some fixed M in (F.i) with ensuing constants independent of n.

Note that throughout this chapter

(12.6) log (x) = ln(x ∨ e),

where ln denotes the natural logarithm.

12.0.3. Coupling inequality based on Zaitsev (1987). Es-
sential to our approach is a result pointed out by Einmahl and Mason
(1997) in their Fact 2.2 that the Strassen–Dudley theorem (see The-
orem 11.6.2 in Dudley (1989)) in combination with a special case of
Theorem 1.1 and Example 1.2 of Zaitsev (1987a) yields the following
coupling. Here |·|N , N ≥ 1, denotes the usual Euclidean norm on RN .

Coupling inequality. Let Y1, . . . , Yn be independent mean zero ran-
dom vectors in RN , N ≥ 1, such that for some B > 0,

|Yi|N ≤ B, i = 1, . . . , n.

If (Ω, T , P ) is rich enough then for each δ > 0, one can define in-
dependent normally distributed mean zero random vectors Z1, . . . , Zn
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with Zi and Yi having the same covariance matrix for i = 1, . . . , n,
such that for universal constants C1 > 0 and C2 > 0,

(12.7) P

{∣∣∣∣∣
n∑
i=1

(Yi − Zi)

∣∣∣∣∣
N

> δ

}
≤ C1N

2 exp

(
− C2δ

N2B

)
.

(Actually Einmahl and Mason did not specify the N2 in (12.7) and
they applied a less precise result in Zaitsev (1987b), however their
argument is equally valid when based upon Zaitsev (1987a).) Often in
applications, N is allowed to increase with n.

We shall require that one of the following two L2-metric entropy con-
ditions (VC) and (BR) holds on the class F . These conditions are
commonly used in the context of weak invariance principles and many
examples are available – see e.g. van der Vaart and Wellner (1996) and
Dudley (1999). We shall now state our main results.

12.0.4. L2-covering numbers. Let F be an envelope function for
the class F , that is, F is a measurable function such that |f (x)| ≤ F (x)
for all x ∈ X and f ∈ F . Given a probability measure Q on (X ,A)
endow M with the semi-metric dQ, where d2Q(f, h) =

∫
X (f − h)2dQ.

Further, for any f ∈M set Q(f 2) = d2Q(f, 0) =
∫
X f

2dQ. For any ε > 0
and probability measure Q denote by N (ε,F , dQ) the minimal number
of open balls {f ∈M : dQ(f, h) < ε} of dQ-radius ε and center h ∈M
needed to cover F . The uniform L2-covering number is defined to be

(12.8) NF (ε,F) = sup
Q
N
(
ε
√
Q(F 2),F , dQ

)
,

where the supremum is taken over all probability measures Q on (X ,A)
for which 0 < Q(F 2) <∞. A class of measurable functions F satisfying
the following uniform entropy condition will be said to be of VC-type:

(VC) Assume that for some c0 ≥ 1, ν0 > 0, and envelope function F ,

(12.9) NF (ε,F) ≤ c0ε
−ν0 , 0 < ε < 1.

In the sequel we shall assume that F := M/2 as in (F.i).

Proposition 1 Under (F.i), (F.ii) and (VC) with F := M/2 for each
λ > 1 there exists a ρ (λ) > 0 such that for each integer n ≥ 1 one
can construct on the same probability space random variables X1, ..., Xn

i.i.d. X and a version of G such that

(12.10) P
{
‖αn −G‖F > ρ (λ)n−τ1 (log n)τ2

}
≤ n−λ,

where τ1 = 1/(2 + 5ν0) and τ2 = (4 + 5ν0)/(4 + 10ν0).

By applying Proposition 1 to suitable disjoint blocks of sums of Xi

we obtain the following strong approximation result. It is an indexed by



 
 

90 12. GAUSSIAN APPROXIMATION AND STRONG APPROXIMATION

functions generalization of an indexed by sets result given in Theorem
7.4 of Dudley and Philipp (1983).

Theorem 1 Under the assumptions and notation of Proposition 1 for
all 1/ (2τ1) < α < 1/τ1 and γ > 0 there exist a ρ (α, γ) > 0, a sequence
of i.i.d. X1, X2..., and a sequence of independent copies G1,G2, . . . , of
G sitting on the same probability space such that
(12.11)

P

{
max

1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

> ρ (α, γ)n1/2−τ(α) (log n)τ2

}
≤ n−γ

and

(12.12) max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

= O
(
n1/2−τ(α) (log n)τ2

)
, a.s.,

where τ (α) = (ατ1 − 1/2) /(1 + α) > 0.

12.0.5. Bracketing condition. Consider a class of functions that
satisfies the following bracketing condition:

(BR) Assume that for some b0 > 1 and 0 < r0 < 1,

(12.13) logN[ ](ε,F , dP ) ≤ b20ε
−2r0 , 0 < ε < 1.

Notice that examples (i) and (ii) in Chapter 9 satisfy this condition. We
derive the following rate of Gaussian approximation assuming an ex-
ponentially scattered index class F , meaning that (12.13) holds. Note
that we get a slower rate in Proposition 2 than that given Proposition
1.

Proposition 2 Under (F.i), (F.ii) and (BR) for each λ > 1 there
exists a ρ (λ) > 0 such that for each integer n ≥ 1 one can construct
on the same probability space random variables X1, ..., Xn i.i.d. X and
a version of G such that

(12.14) P
{
‖αn −G‖F > ρ (λ) (log n)−κ

}
≤ n−λ,

where κ = (1− r0)/2r0.
Proposition 2 leads to the following indexed by functions general-

ization of an indexed by sets result given in Theorem 7.1 of Dudley and
Philipp (1983).

Theorem 2 Under the assumptions and notation of Proposition 2, with
κ < 1/2 (i.e. 1/2 < r0 < 1), for every H > 0 there exist ρ (τ,H) > 0
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and a sequence of i.i.d. X1, X2..., and a sequence of independent copies
G1,G2, . . . , of G sitting on the same probability space such that
(12.15)

P

{
max

1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

>
√
nρ (τ,H) (log n)−τ

}
≤ (log n)−H

and

(12.16) max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

= O
(√

n(log n)−τ
)

, a.s.,

where τ = κ (1/2− κ) / (1− κ).

Remark Kevei and Mason (2016) have recently applied the methods
of proof in Berthet and Mason (2006) to obtain couplings and strong
approximations to time dependent empirical processes based on i.i.d.
fractional Brownian motions.

12.0.6. The KMT (1975) Approximations. The coupling and
strong approximation results in this chapter are far from being optimal
in special cases. For comparison consider the following couplings and
strong approximation results of Komlós, Major and Tusnády [KMT]
(1975). KMT (1975) proved the following remarkable Brownian bridge
approximation to the uniform empirical process.

Theorem [KMT] There exists a probability space (Ω, A, P ) with in-
dependent Uniform (0, 1) random variables U1, U2, . . . , and a sequence
of Brownian bridges B1, B2, . . . , such that for all n ≥ 1 and −∞ <
x <∞,

(12.17) P

{
sup
0≤t≤1

|αn(t)−Bn(t)| ≥ n−1/2(a log n+ x)

}
≤ b exp(−cx),

where a, b and c are suitable positive constants independent of n and
x.

KMT (1975) also proved the following Kiefer process approximation to
αn.

Theorem [KMT(KP)] There exists a probability space (Ω, A, P ) with
independent Uniform (0, 1) random variables U1, U2, . . . , and a se-
quence of independent Brownian bridges B1, B2, . . . , such that for all
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n ≥ 1 and −∞ < x <∞,

P

{
sup
0≤t≤1

|αn(t)− n−1/2
n∑
i=1

Bi(t)| ≥ n−1/2 log n(a1 log n+ x)

}

≤ b1 exp(−c1x),
(12.18)

where a1, b1 and c1 are suitable positive constants independent of n and
x.

We should point out that the probability space of KMT is not the same
at the probability space of KMT(KP). We see that on the probability
space of KMT(KP)

(12.19) sup
0≤t≤1

|αn(t)− n−1/2
n∑
i=1

Bi(t)| = O

(
(log n)2√

n

)
, a.s.

The best rate of strong approximation that we can get using Theorem
1 in this setup is that for some small 0 < δ < 1/2

sup
0≤t≤1

|αn(t)− n−1/2
n∑
i=1

Bi(t)| = O
(
n−δ
)

, a.s.

12.0.7. Key probability space gluing result. Besides the ex-
ponential and moment inequalities for empirical and Gaussian pro-
cesses introduced in the previous chapters, and the coupling inequality
(12.7), the following result is key to constructing the probability spaces
in Propositions 1 and 2 and Theorems 1 and 2.

Vorob’ev (1962)-Berkes and Philipp (1979) (Theorem 1.1.10 of
Dudley (1999)) Let Si, i = 1, 2, 3 be Polish spaces. Let F be a distri-
bution on S1 × S2 and G be a distribution on S2 × S3 such that the
second marginal of F is equal to the first marginal of G. Then there
exists a probability space and a random vector (Z1, Z2, Z3) defined on
it taking its values in S1 × S2 × S3 such that (Z1, Z2) has distribution
F and (Z2, Z3) has distribution G.

I first knew this result as Lemma A1 of Berkes and Philipp (1979).

12.1. Proofs of main results

12.1.1. Description of construction of (αn,G). Under (F.i),
(F.ii) and either (VC) or (BR) for any ε > 0 we can choose a grid

H (ε) = {hk : 1 ≤ k ≤ N (ε)}
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of measurable functions on (X ,A) such that each f ∈ F is in a ball
{f ∈M : dP (hk, f) < ε} around some hk, 1 ≤ k ≤ N (ε). The choice

(12.20) N (ε) ≤ N (ε/2,F , dP )

permits us to select hk ∈ F . Set

F (ε) =
{

(f, f ′) ∈ F2 : dP (f, f ′) < ε
}
.

Fix n ≥ 1. Let X, X1, . . . , Xn be independent with common law PX
and ε1, ..., εn be independent Rademacher random variables mutually
independent of X1, ..., Xn. Write for ε > 0,

µn (ε) = E

{
sup

(f,f ′)∈F(ε)

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f ′) (Xi)

∣∣∣∣∣
}

For future reference we note that

(12.21) µn (ε) = E

{
sup

(f−f ′)∈G(ε)

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f ′) (Xi)

∣∣∣∣∣
}
,

where

G (ε) = {f − f ′ : (f, f ′) ∈ F (ε)} .

(Note that with some abuse of notation in our proofs ε1, ..., εn are
Rademacher variables and ε denotes a positive number.)

Next set

µ (ε) = E

{
sup

(f,f ′)∈F(ε)
|G(f)−G(f ′)|

}
.

Observe that we can write

(12.22) µ (ε) = E {sup |G(f)−G(f ′)| : f, f ∈ F , dP (f, f ′) < ε} .

Given ε > 0 and n ≥ 1, our aim is to construct a probability space
(Ω, T , P ) on which sit X1, . . . , Xn and a version of the Gaussian process
G indexed by F such that for H (ε) and F (ε) defined as above and for
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all A > 0, δ > 0 and t > 0,

P {‖αn −G‖F > Aµn (ε) + µ (ε) + δ + (A+ 1) t}

≤ P

{
max
h∈H(ε)

|αn (h)−G(h)| > δ

}
+ P

{
sup

(f,f ′)∈F(ε)
|αn (f)− αn (f ′)| > Aµn (ε) + At

}

+ P

{
sup

(f,f ′)∈F(ε)
|G(f)−G(f ′)| > t+ µ (ε)

}
=: Pn (δ) +Qn (t, ε) +Q (t, ε) ,(12.23)

with all these probabilities simultaneously small for suitably chosen
A > 0, δ > 0 and t > 0. Consider the n i.i.d. mean zero random
vectors in RN(ε), 1 ≤ i ≤ n,

Yi :=
1√
n

(
h1 (Xi)− E(h1 (X)), . . . , hN(ε) (Xi)− E(hN(ε) (X))

)
.

First note that by hk ∈ F and (F.i), we have

|Yi|N(ε) ≤M

√
N (ε)

n
, 1 ≤ i ≤ n.

Therefore by the coupling inequality (12.7) we can define Y1, . . . , Yn
i.i.d.

Y :=
(
Y 1, . . . , Y N(ε)

)
and Z1, . . . , Zn i.i.d.

Z :=
(
Z1, . . . , ZN(ε)

)
mean zero Gaussian vectors on the same probability space such that

Pn (δ) ≤ P


∣∣∣∣∣
n∑
i=1

(Yi − Zi)

∣∣∣∣∣
N(ε)

> δ


(12.24) ≤ C1N (ε)2 exp

(
− C2

√
n δ

(N (ε))5/2M

)
,

where cov(Z l, Zk) = cov(Y l, Y k) =: 〈hl, hk〉. Moreover by Lemma A1
of Berkes and Philipp (1979) (also see Vorob’ev (1962)), which is stated
above, this space can be extended to include a P -Brownian bridge G
indexed by F such that for each 1 ≤ k ≤ N (ε),

G(hk) = n−1/2
n∑
i=1

Zk
i .



 
 

12.1. PROOFS OF MAIN RESULTS 95

The Pn (δ) in (12.23) is defined through this G. Notice that the proba-
bility space on which Y1, . . . , Yn, Z1, . . . , Zn and G sit depends on n ≥ 1
and the choice of ε > 0 and δ > 0.

Observe that the class G (ε) satisfies (F.i) with M/2 replaced by M ,
(F.ii) and

σ2
G(ε) = sup

(f,f ′)∈F(ε)
V ar(f(X)− f ′(X)) ≤ sup

(f,f ′)∈F(ε)
d2P (f, f ′) ≤ ε2.

Thus with A > 0 as in (10.17) we get by applying Talagrand’s inequal-
ity,

Qn (t, ε) = P
{
||αn||G(ε) > A (µn (ε) + t)

}
(12.25) ≤ 2 exp

(
−A1t

2

ε2

)
+ 2 exp

(
−A1

√
n t

M

)
.

Next, consider the separable centered Gaussian process

Z(f,f ′) = G(f)−G(f ′)

indexed by T = F (ε). We have

σ2
T (Z) = sup

(f,f ′)∈F(ε)
E
(
(G(f)−G(f ′))2

)
= sup

(f,f ′)∈F(ε)
V ar (f(X)− f ′(X))

≤ sup
(f,f ′)∈F(ε)

d2P (f, f ′) ≤ ε2.

Borell’s inequality (4.2) now gives

Q (t, ε) = P

{
sup

(f,f ′)∈F(ε)
|G(f)−G(f ′)| > t+ µ (ε)

}

(12.26) ≤ 2 exp

(
− t2

2ε2

)
.

Putting (12.24), (12.25) and (12.26) together we obtain, for some pos-
itive constants A, A1 and A5 = min

{
1
2
, A1

}
,

P {‖αn −G‖F > Aµn (ε) + µ (ε) + δ + (A+ 1) t}

≤ C1N (ε)2 exp

(
− C2

√
n δ

(N (ε))5/2M

)

(12.27) +2 exp

(
−A1

√
n t

M

)
+ 4 exp

(
−A5t

2

ε2

)
.

Remark Here we describe the crucial Polish spaces that allow us to
apply the Berkes and Philipp Lemma A1 as in the construction leading
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to (12.27). Notice that by applying the entropy bound in the case (VC)
holds

(12.28) N (ε
√
P (F 2),F , dP ) ≤ NF (ε,F) ≤ c0ε

−ν0 , 0 < ε < 1,

and in the case (BC) holds N (ε,F , dP ) ≤ N[ ](ε,F , dP ), so that

logN[ ](ε,F , dP ) ≤ b20ε
−2r0 , 0 < ε < 1.

Thus in either case we can assume via the Dudley (4.7) condition that
the P -Brownian bridge G indexed by F is separable, bounded and dp
uniformly continuous. Moreover, since F is obviously totally bounded,
its completion F c is compact. Thus when applying the Berkes and
Philipp lemma we can assume that G is a P -Brownian bridge G indexed
by F c taking values in the Polish space S3 of bounded real valued
functions defined on the compact set F c continuous with respect to
dP . Therefore X1, . . . , Xn i.i.d. X, Y1, . . . , Yn i.i.d. Y and Z1, . . . , Zn
i.i.d. Z take values in the Polish space S1×S2, where S1 = X n×RN(ε)n

(X is the Polish space where X takes its values.), and S2 = RN(ε)n, and
Z1, . . . , Zn i.i.d. Z and G take values in the Polish space S2 × S3.

12.1.1.1. Proof of Proposition 1. Let us assume that (VC) holds
with F := M/2, then

N (s/2,F , dP ) = N
(
sM/2

2M/2
,F , dP

)
,

which by using (12.28) is for some c0 ≥ 1 and ν0 > 0, with c1 =

c0

(
2
√
PF 2

)ν0
= c0 (M)ν0 , is for 0 < s < 1,

(12.29) ≤ NF
( s
M
,F
)
≤ c0M

ν0s−ν0 = c1s
−ν0 , 0 < s < 1.

We also get that

(12.30) N (s) ≤ N (s/2,F , dP ) ≤ c1s
−ν0 .

Notice that

(12.31) N (s,G(ε), dP ) ≤ (N (s/2,F , dP ))2 ≤ c21s
−2ν0 .

Moreover for some C ≥ 1 and all 0 < ε < 1

(12.32) N (ε,G(ε)) ≤ Cε−2ν0 .

The representation (12.22) and the (VC) bound (12.32) permits us to
apply the moment bound given in (8.5), taken with G = G(ε), G := M ,
υ = 2ν0 and β = M , to get for any 0 < ε ≤ 1/ (8C) and n ≥ 1 such
that

(12.33)

√
nε

2
√

1 + 2ν0
√

log(M ∨ 1/ε)
> M,
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the bound

µn (ε) ≤ Aε
√

2ν0 log(M ∨ 1/ε).

Whereas, we get by the Gaussian moment bound (4.4), for all 0 <
ε ≤ 1/ (8C), keeping (12.22) in mind, that

µ (ε) ≤ A4

∫
[0,ε]

√
N (s/2,F , dP )ds,

which by (12.29)

≤ A4

∫
[0,ε]

√
log (c1s−2ν0)ds.

This last bound is, in turn, for some constant A5 > A4

≤ A5ε
√

log (1/ε).

(Here we use N (s/2,F , dP ) instead of N (s,F , dP ) to ensure that balls
are centered in F .) Hence, for some D > 0 it holds for all 0 < ε ≤
1/ (8C) and n ≥ 1 large enough so that (12.33) holds,

(12.34) Aµn (ε) + µ (ε) ≤ Dε
√

log (1/ε).

Therefore, in view of (12.34) and (12.27) it is natural to define for
suitably large positive γ1 and γ2,

δ = γ1ε
√

log (1/ε) and t = γ2ε
√

log (1/ε).

We now have for all 0 < ε ≤ 1/ (8C) and n ≥ 1 so that (12.33) is
satisfied on a suitable probability space depending on n ≥ 1, ε and δ
so that (12.27) holds and recalling the bound (12.30) we get

P
{
‖αn −G‖F > (D + γ1 + (1 + A) γ2) ε

√
log (1/ε)

}

≤ C1c
2
2

ε2ν0
exp

(
−γ1C2

√
n

c
5/2
2 M

ε1+5ν0/2
√

log (1/ε)

)

+ 2 exp

(
−A1γ2

√
n

M
ε
√

log (1/ε)

)
+ 4 exp

(
−A5γ

2
2 log (1/ε)

)
.

By taking ε = ((log n)/n)1/(2+5ν0), which satisfies (12.33) for all large
enough n, we readily obtain from these last bounds that for every λ > 1
there exist D > 0, γ1 > 0 and γ2 > 0 such that for all n ≥ 1, αn and G
can be defined on the same probability space so that

P

{
∆n > (D + γ1 + (1 + A) γ2)

(
log n

n

)1/(2+5ν0)
√

log n

2 + 5ν0

}
≤ n−λ,
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where ∆n = ‖αn −G‖F . It is clear now that there exists a ρ (λ) > 0
such that (12.10) holds. This completes the proof of Proposition 1. �

12.1.1.2. Proof of Proposition 2. Under (BR) as defined in (12.13)
we have, for some 0 < r0 < 1 and b0 > 0, with 0 < s < 1,

(12.35) N (s) ≤ N (s/2,F , dP ) ≤ N[ ](s/2,F , dP ) ≤ exp

(
22r0b20
s2r0

)
,

and as above

N (s,G(ε), dP )

≤ N[ ](s,G(ε), dP ) ≤
(
N[ ](s/2,F , dP )

)2 ≤ exp

(
2

22r0b20
s2r0

)
.

Setting σ = ε in (9.1) and (9.2) we get

J (ε,G(ε)) =

∫
[0,ε]

√
1 +N[ ](s,G(ε), dP ) ds

≤
∫
[0,ε]

√
1 +

22r0+1b20
s2r0

ds,

which since b0 > 1

≤ 2r0+1b0

∫
[0,ε]

ds

sr0
≤ 2r0+1b0

1− r0
ε1−r0

and

a (ε,G(ε)) =
ε√

1 + logN[ ](ε,G(ε), dP )

≥ ε√
1 +

22r0+1b20
ε2r0

>
ε1+r0

2r0+1b0
.

Hence by the moment bound given in (9.5), assuming (BR), taken with
G (X) = M ,

µn (ε) ≤ A3

(
2r0+1b0
1− r0

ε1−r0 +
√
nM1

{
M >

√
n
ε1+r0

2r0+1b0

})
.

Moreover, since by (12.13)∫
[0,ε]

√
N[ ](s,F , dP ) ds ≤

∫
[0,ε]

√
b20
s2r0

ds

≤ b0

∫
[0,ε]

ds

sr0
=

b0
1− r0

ε1−r0 ,
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we get by the Gaussian moment bound (4.4) and keeping (12.22) in
mind that

µ (ε) ≤ A4b0
1− r0

ε1−r0 .

As a consequence, for

(12.36) ε >
(2r0+1b0M)

1/(1+r0)

n1/(2+2r0)

it follows that with D = (AA32
r0+1 + A4) b0/(1− r0),

Aµn (ε) + µ (ε) ≤ Dε1−r0 .

Thus it is natural to take in (12.27), for some γ1 > 0 and γ2 > 0 large
enough,

δ = γ1ε
1−r0 and t = γ2ε

1−r0 ,

which gives with ρ = D+ γ1 + (A+ 1) γ2, as long as (12.36) holds, and
recalling the bound (12.35),

P
{
‖αn −G‖F > ρε1−r0

}
≤ C1 exp

(
22r0+1b20
ε2r0

− γ1C2

√
n

M
ε1−r0 exp

(
−5 (22r0b20)

2ε2r0

))
+ 2 exp

(
−A1γ2

√
n

M
ε1−r0

)
+ 4 exp

(
−A5γ

2
2

ε2r0

)
.

We choose

ε =

(
10b202

2r0

log n

)1/(2r0)

,

which satisfies (12.36) for large enough n ≥ 2 and makes

exp

(
−5 (22r0b20)

2ε2r0

)
= n−1/4.

Given any λ > 0 we clearly see now from this last probability bound
that for ρ (λ) > 0 made large enough by increasing γ1 and γ2 we get
for all n ≥ 1,

P
{
‖αn −G‖F > ρ (λ) (log n)−(1−r0)/2r0

}
≤ n−λ.

This finishes the proof of Proposition 2. �
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12.1.2. Proofs of strong approximations. Notice that the con-
ditions on F in Propositions 1 and 2 imply that there exists a constant
B such that

sup
n≥1

E

(∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

)
≤ B and E (‖G‖F) ≤ B.

Therefore by Talagrand’s inequality (10.17) for all n ≥ 1 and t > 0 we
have, for suitable finite constants A > 0 and C1 > 0,

P

{
max

1≤m≤n

√
m||αm||F > A

√
n (B + t)

}
≤ 2 exp

(
−C1t

2

σ2
F

)
+ 2 exp

(
−C1t

√
n

M

)
,(12.37)

where σ2
F := supf∈F V ar(f(X)). Furthermore, by Borell’s inequality

(4.2), Lévy’s inequality (see Proposition A.1.2 in van der Vaart and
Wellner (1996)) and the fact that n−1/2

∑n
i=1 Gi =d G, for i.i.d. Gi, we

get for all n ≥ 1 and t > 0 that

(12.38) P

{
max

1≤m≤n

∥∥∥∥∥
m∑
i=1

Gi

∥∥∥∥∥
F

>
√
n (B + t)

}
≤ 2 exp

(
− t2

2σ2
F

)
.

12.1.2.1. Proof of Theorem 1. Choose any γ > 0. We shall modify
the scheme described on pages 236–238 of Philipp (1986) to construct
a probability space on which (12.11) and (12.12) hold. Let n0 = 1 and
for each k ≥ 1 set nk = [kα], where [x] denotes the integer part of x
and α is chosen so that

(12.39) 1/2 < τ1α < 1.

Notice that τ1 < 1/2 in Proposition 1 and thus α > 1.
Applying Proposition 1, we see that for each λ > 1 there exists a

ρ = ρ (λ) > 0 such that one can construct a sequence of independent

pairs
(
α
(k)
nk ,G(k)

)
k≥1

sitting on the same probability space satisfying

for all k ≥ 1,

(12.40) P
{∥∥α(k)

nk
−G(k)

∥∥
F > ρn−τ1k (log nk)

τ2
}
≤ n−λk .

Set for k ≥ 1

tk =
∑
j<k

nj ∼
1

1 + α
kα+1.

Using Lemma A1 of Berkes and Philipp (1979) we can assume that

each α
(k)
nk is formed from Xtk+1, . . . , Xtk+1

i.i.d. X and that each G(k)
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is formed as

G(k) =
1
√
nk

∑
tk<j≤tk+1

Gj,

where Gtk+1, . . . ,Gtk+1
are i.i.d. G. Moreover we can do this in such a

way that X1, X2 . . . , are i.i.d. X and G1,G2, . . . , are i.i.d. G. For any
integer N ≥ 2 set N (β) =

[
Nβ
]
, where β = α/ (1 + α). Define

s (N) =
N∑

k=N(β)

n
1/2−τ1
k (log nk)

τ2 .

Now for some constants c1 > 0 and c > 0,
(12.41)

s (N) ∼ c1N
(1+α)/2−(ατ1−1/2) (logN)τ2 ∼ c (tN)1/2−τ(α) (log tN)τ2 ,

where τ (α) = (ατ1 − 1/2) /(1 + α) > 0, by (12.39).
We have

P

 max
1≤m≤tN

∥∥∥∥∥
m∑
j=1

[f (Xj)− Ef (X)−Gj (f)]

∥∥∥∥∥
F

> ρs(N)


≤ P

 max
1≤m≤tN(β)

∥∥∥∥∥
m∑
j=1

[f (Xj)− Ef (X)]

∥∥∥∥∥
F

>
ρs(N)

4


+P

 max
1≤m≤tN(β)

∥∥∥∥∥
m∑
j=1

Gj (f)

∥∥∥∥∥
F

>
ρs(N)

4


+

N−1∑
k=N(β)

P

 max
t
k
+1≤m≤t

k+1

∥∥∥∥∥∥
m∑

j=t
k
+1

[f (Xj)− Ef (X)]

∥∥∥∥∥∥
F

>
ρs(N)

8


+

N−1∑
k=N(β)

P

 max
t
k
+1≤m≤t

k+1

∥∥∥∥∥∥
m∑

j=t
k
+1

Gj (f)

∥∥∥∥∥∥
F

>
ρs(N)

8


+P

 max
N(β)≤j<N

∥∥∥∥∥∥
j∑

k=N(β)

(√
nkα

(k)
nk
−
√
nkG(k)

)∥∥∥∥∥∥
F

>
ρs(N)

4


=:

5∑
i=1

Pi (ρ,N) .
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It is easy to show using inequalities (12.37) and (12.38), along with the
choice of 1/2 < β = α/(1 + α) < 1, that for any γ > 0 for all large
enough ρ,

(12.42)
2∑
i=1

Pi (ρ,N) ≤ t−γN /4, for all N ≥ 1.

For instance, consider P1 (ρ,N). Observe that

P1 (ρ,N) ≤ P

{
max

1≤m≤tN(β)

√
m||αm||F > A

√
tN(β) (B + τN)

}
,

where

τN =

(
ρs (N)

4
−B

)
/
(
A
√
tN(β)

)
.

Now
√
tN(β) ∼ c2N

α/2 for some c2 > 0. Therefore by (12.41) for some
c3 > 0,

τN ∼ c3N
1−τ1α (logN)τ2 .

Since by (12.39) we have 1 − τ1α > 0, we readily get from inequality
(12.37) that for any γ > 0 and all large enough ρ, P1 (ρ,N) ≤ t−γN /8,
for all N ≥ 1. In the same way we get using inequality (12.38) that
for any γ > 0 and all large enough ρ, P2 (ρ,N) ≤ t−γN /8, for all N ≥ 1.
Hence we have (12.42).

In a similar fashion one can verify that for any γ > 0 and all large
enough ρ,

(12.43)
4∑
i=3

Pi (ρ,N) ≤ t−γN /4, for all N ≥ 1.

To see this, notice that

P3 (ρ,N) ≤ NP

{
max

1≤m≤nN

√
m||αm||F > ρs (N) /8

}
and

P4 (ρ,N) ≤ NP

{
max

1≤m≤nN
||

m∑
j=1

Gj (f) ||F > ρs (N) /8

}
.

Since
√
nN ∼ Nα/2 and N ∼ c3t

1/(α+1)
N for some c3 > 0, we get (12.43)

by proceeding as above using inequalities (12.37) and (12.38).
Next, recalling the definition of s (N), we get

P5 (ρ,N) ≤ P


N∑

k=N(β)

∥∥√nkα(k)
nk
−
√
nkG(k)

∥∥
F >

ρs(N)

4


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≤
N∑

k=N(β)

P

{∥∥√nkα(k)
nk
−
√
nkG(k)

∥∥
F >

ρn
1/2−τ1
k (log nk)

τ2

4

}
,

which by (12.40) for any λ > 0 and ρ = ρ (α, λ) > 0 large enough is

≤ N
([
Nβ
]α)−λ

, for all N ≥ 1,

which, in turn, for large enough λ > 0 is ≤ t−γN /2. Thus for all γ > 0
there exists a ρ > 0 so that

5∑
i=1

Pi (ρ,N) ≤ t−γN , for all N ≥ 1.

Since α can be any number satisfying 1/2 < τ1α < 1 and tN+1/tN → 1,
this implies (12.11) for ρ = ρ (α, λ) large enough. The almost sure
statement (12.12) follows trivially from (12.11) using a simple block-
ing and the Borel–Cantelli lemma on the just constructed probability
space. This proves Theorem 1. �

12.1.2.2. Proof of Theorem 2. The proof follows along the same
lines as that of Theorem 1. Therefore for the sake of brevity we shall
only outline the proof. Here we borrow ideas from the proof of Theorem
6.2 of Dudley and Philipp (1983). Recall that in Theorem 2 we assume
that 1/2 < r0 < 1 in Proposition 2, which means that 0 < κ :=
(1− r0)/2r0 < 1/2. For k ≥ 1 set

(12.44) tk =
[
exp

(
k1−κ

)]
and nk = tk − tk−1, where t0 = 1.

Now for some b > 0 we get nk ∼ b2k−κtk,
√
nk

(log nk)
κ ∼

b
√
tk

kκ(1−κ)+κ/2
=
b
√
tk

kκ+θ
,

where θ = κ
(
1
2
− κ
)
> 0. Choose 0 < β < 1 and set N (β) =

[
Nβ
]
.

Using an integral approximation we get for suitable constants c1 > 0
and c2 > 0, for all large N
(12.45)

c1
√
tN

N θ
≤ s (N) :=

N∑
k=N(β)

√
nk

(log nk)
κ ≤

c2
√
tN

N θ
≤ c2

√
tN

(log(tN))θ/(1−κ)
.

Also for all large N ,

(12.46) s (N) /
√
nN ≥

c1
2b
Nκ/2−κ( 1

2
−κ) =: c0N

κ2 .

For later use note that for any 0 < β < 1 and ζ > 0

(12.47)
s (N)√
tN(β)N ζ

→∞, as N →∞,
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and observe that

(12.48) tN+1/tN → 1, as N →∞.
Constructing a probability space and defining Pi (ρ,N), i = 1, . . . , 5,
as in the proof of Theorem 1, but with nk, tk and s (N) as given in
(12.44) and (12.45) the proof now goes much like that of Theorem 1.
In particular, using inequalities (12.37) and (12.38), and noting that

N ∼ (log (tN))1/(1−κ), one can check that for some ν > 0, for all large
enough N ,

4∑
i=1

Pi (ρ,N) ≤ exp (− (log (tN))ν)

and by arguing as in the proof of Theorem 1, but now using Proposition
2, we easily see that for every H > 0 there is a probability space on
which sit i.i.d. X1, X2..., and i.i.d. G1,G2, . . . , and a ρ > 0 such that

P5 (ρ,N) ≤ (log (tN))−H−1 , for all N ≥ 1.

Since for all H > 0,

log (tN)H
(

exp (− (log (tN))ν) + (log (tN))−H−1
)
→ 0, as N →∞,

this in combination with (12.45) and (12.48) proves that (12.15) holds
with τ = θ/ (1− κ) and ρ (τ,H) large enough. A simple blocking
argument shows that (12.16) follows from (12.15). Choose H > 1 in
(12.15). Notice that for any k ≥ 1,

P

{
∪2k<n≤2k+1

{
max

1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

>
√

2nρ (τ,H) (log n)−τ

}}

≤ P

{
max

1≤m≤2k+1

∥∥∥∥∥√mαm −
m∑
i=1

Gi

∥∥∥∥∥
F

>
√

2k+1ρ (τ,H) (log 2k+1)−τ

}
≤ ((k + 1) log 2)−H .

Hence (12.16) holds by the Borel-Cantelli lemma. �
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